No questions found
Work out $\frac{7}{12} - \frac{1}{3}$.
Give your answer in its lowest terms.
Change 12 metres per second into kilometres per hour.
Answer ............................. km/h [2]
(a) Write 0.000048 in standard form.
Answer(a) ............................................................. [1]
(b) Work out $ (2 \times 10^8) \times (6 \times 10^7) $, giving your answer in standard form.
Answer(b) ....................................................... [2]
The price of a computer is reduced by 5%.
The actual reduction is $17.
Find the original price of the computer.
Simplify \( \sqrt{75} - \sqrt{27} \).
$v = u + at$
(a) Find the value of $v$ when $u = 12$, $a = -2$ and $t = 5$.
Answer(a) .................................................. [1]
(b) Rearrange the formula to make $a$ the subject.
Answer(b) $a = ..................................................$ [2]
Work out the length of $AC$.
The cumulative frequency curve shows information about the journey times to school of 200 students.
(a) Find the median.
Answer(a) ........................... min [1]
(b) Find the number of students with a journey time of more than 20 minutes.
Answer(b) .......................................... [2]
Find the value of each of the following.
(a) $ (0.2)^3 $ Answer(a) \text{.........................................................} \qquad [1]
(b) $ \left( \frac{1}{2} \right)^{-1} $ Answer(b) \text{.........................................................} \qquad [1]
(c) $ 64^{\frac{2}{3}} $ Answer(c) \text{.........................................................} \qquad [1]
(d) $ \log_9 3 $ Answer(d) \text{.........................................................} \qquad [1]
A, B, C \text{ and } D \text{ lie on a circle, centre } O.
Find the value of $x$ and the value of $y$.
Answer $x = \text{.................................}$
$y = \text{.................................}$
The diagram shows the graph of $y = |px + q|$.
Find the value of $p$ and the value of $q$.
Answer $p =$ .......................................................
$q =$ ....................................................... [3]
The Venn diagram shows the \textbf{number of elements} in each subset.
(a) Find $n(P \cup Q)'$.
Answer(a) ............................................................ [1]
(b) Shade the region $P \cap Q'$. [1]
A is the point $(-4, 4)$ and B is the point $(4, 10)$.
Find the equation of the perpendicular bisector of $AB$.
y varies inversely as \( \sqrt{x} \).
When \( x = 9 \), \( y = 3 \).
(a) Find \( y \) in terms of \( x \).
Answer(a) \( y = \text{..........................................} \) [2]
(b) Find the value of \( y \) when \( x = 81 \).
Answer(b) \( \text{................................................} \) [1]
The graph of $y = a \cos(bx)^\circ$ has a maximum point at (360, 3) and a minimum point at (450, -3).
Find the value of $a$ and the value of $b$.
Answer $a =$ ..................................................
$b =$ ...................................................... [2]