No questions found
Work out.
(a) \( 3 - 0.018 \) .......................................... [1]
(b) \( 0.04^2 \) .......................................... [1]
(c) \( \frac{0.08}{0.2} \) .......................................... [1]
(a) Write 5249.6 correct to two significant figures. ....................................................... [1]
(b) Write 0.0030626 correct to three decimal places. ....................................................... [1]
A car travels 300 metres in 20 seconds.
Find the average speed of the car in
(a) metres per second, ......................................................... m/s [1]
(b) kilometres per hour. ......................................................... km/h [2]
Solve.
(a) \( 2 - 4(5 - 2x) = 0 \)
\( x = \text{...........................................} \) [2]
(b) \(|2x - 5| = 9\)
\( x = \text{..................... or } x = \text{.....................} \) [2]
Find the value of
(a) $64^{0}$, ......................................................... [1]
(b) $64^{\frac{1}{3}}$. ......................................................... [1]
A regular polygon has 30 sides.
Find the size of one exterior angle.
Factorise.
(a) $12ax - 2by + 3ay - 8bx$ .............................................. [2]
(b) $5x^2 - 6x - 8$ .............................................. [2]
(a) Work out $\begin{pmatrix} 12 \\ -5 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$. [2]
(b) Work out the magnitude of $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$. [2]
Rearrange this equation to make $x$ the subject.
\[ \frac{a}{2x - 3} = \frac{b}{5x} \]
$x$ = .............................
(a) Solve.
$$\sin x = \frac{1}{2} \text{ for } 0^\circ \leq x \leq 90^\circ$$
$$x = \text{.......................................} \; [1]$$
(b) Solve.
$$\sin x = -\frac{1}{2} \text{ for } 0^\circ \leq x \leq 360^\circ$$
$$x = \text{.......................................} \; [2]$$
The points $A \ (2, \ 8)$ and $B \ (6, \ -2)$ are shown on the diagram.
Find the equation of the perpendicular bisector of the line $AB$.
Give your answer in the form $y = mx + c$.
$y = \text{.............................................}$ [5]
A bag contains 12 discs. 7 discs are red and 5 discs are green. A disc is picked at random and not replaced. A second disc is then picked at random.
Find the probability that
(a) both discs are green, .................................................... [2]
(b) at least one disc is green. .................................................... [3]