No questions found
Work out.
$3 + 7 \times 2 + 5$
.......................................... [1]
Complete the statement.
A parallelogram has rotational symmetry of $\text{.....................}$ and $\text{.....................}$ lines of symmetry.
(a) A number is greater than 1.
The number is also both a square number and a cube number.
Write down a possible value of this number. ............................................ [1]
(b) Write down a prime number between 90 and 100. ............................................ [1]
Write down the inequality shown on the number line.
Work out. $$\frac{3}{4} \cdot \frac{8}{9}$$
$|x| < 2$
Write down all the integer values of $x$.
The bearing of $P$ from $Q$ is $110^{\circ}$.
Find the bearing of $Q$ from $P$.
On the diagram, sketch the graph of $y = \frac{1}{x}$.
The diagram shows an arc of a circle, centre $O$, radius $r$ cm. The length of the arc is $k \pi r$ cm.
Find the value of $k$. Give your answer as a fraction in its simplest form.
$k = \text{.................................}$ [2]
(a) Shade the region $(P \cup Q)'$.
(b) The Venn diagram shows the number of elements in each region.
Find $n(R \cap T')$.
............................................. [1]
(c) Use set notation to describe the shaded region.
............................................. [1]
Rearrange the formula to make $w$ the subject.
$$y = \frac{w^2}{2}$$
$w = \text{...........................................................}$ \ [1]
Work out the value of $32^{\frac{2}{5}}$.
AB is a tangent to the circle at T.
Find the value of $x$.
[Image_1: Diagram of circle with tangent AB and angles labeled: $40^\circ$, $77^\circ$, $x^\circ$]
$x = \text{............................}$
Simplify.
$\sqrt{125} + \sqrt{80}$ ................................................. [2]
Solve.
$$ \frac{8 - x}{3} = \frac{x + 1}{2} $$
$x = \text{.............................}$ [3]
Factorise.
$3x + 6 - 2xy - 4y$
$3^x = 27^{x+2}$
Find the value of $x$.
$x = \text{.....................}$
Simplify.
$$ \frac{w^2 - 9}{2w^2 + 5w - 3} $$
log 48 + log 18 - 2 \cdot log 24 = log t
Find the value of \( t \).
\( t = \text{.................................} \)
Given \( \tan x = k \) and \( 0^\circ < x < 90^\circ \).
Find, in terms of \( k \),
(a) \( \tan(180^\circ - x) \), ......................................................... [1]
(b) \( \tan(90^\circ - x) \). ........................................................ [1]