All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2021 Winter Zone 2
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out.

$3 + 7 \times 2 + 5$

.......................................... [1]

02.
Theory 2 Marks
CH5 - Geometry

Complete the statement.
A parallelogram has rotational symmetry of $\text{.....................}$ and $\text{.....................}$ lines of symmetry.

03.
Theory 2 Marks
CH1 - Number

(a) A number is greater than 1.
The number is also both a square number and a cube number.
Write down a possible value of this number. ............................................ [1]
(b) Write down a prime number between 90 and 100. ............................................ [1]

04.
Theory 1 Marks
CH1 - Number

Write down the inequality shown on the number line.

05.
Theory 2 Marks
CH1 - Number

Work out. $$\frac{3}{4} \cdot \frac{8}{9}$$

06.
Theory 1 Marks
CH2 - Algebra

$|x| < 2$
Write down all the integer values of $x$.

07.
Theory 2 Marks
CH5 - Geometry

The bearing of $P$ from $Q$ is $110^{\circ}$.
Find the bearing of $Q$ from $P$.

08.
Theory 2 Marks
CH5 - Geometry

On the diagram, sketch the graph of $y = \frac{1}{x}$.


09.
Theory 2 Marks
CH7 - Mensuration

The diagram shows an arc of a circle, centre $O$, radius $r$ cm. The length of the arc is $k \pi r$ cm.
Find the value of $k$. Give your answer as a fraction in its simplest form.

$k = \text{.................................}$ [2]

10.
Theory 3 Marks
CH9 - Sets

(a) Shade the region $(P \cup Q)'$.

(b) The Venn diagram shows the number of elements in each region.

Find $n(R \cap T')$.
............................................. [1]
(c) Use set notation to describe the shaded region.

............................................. [1]

11.
Theory 1 Marks
CH2 - Algebra

Rearrange the formula to make $w$ the subject.
$$y = \frac{w^2}{2}$$
$w = \text{...........................................................}$ \ [1]

12.
Theory 1 Marks
CH1 - Number

Work out the value of $32^{\frac{2}{5}}$.

13.
Theory 2 Marks
CH5 - Geometry

AB is a tangent to the circle at T.
Find the value of $x$.
[Image_1: Diagram of circle with tangent AB and angles labeled: $40^\circ$, $77^\circ$, $x^\circ$]
$x = \text{............................}$

14.
Theory 2 Marks
CH1 - Number

Simplify.
$\sqrt{125} + \sqrt{80}$ ................................................. [2]

15.
Theory 3 Marks
CH2 - Algebra

Solve.

$$ \frac{8 - x}{3} = \frac{x + 1}{2} $$

$x = \text{.............................}$ [3]

16.
Theory 2 Marks
CH2 - Algebra

Factorise.
$3x + 6 - 2xy - 4y$

17.
Theory 2 Marks
CH1 - Number

$3^x = 27^{x+2}$
Find the value of $x$.
$x = \text{.....................}$

18.
Theory 4 Marks
CH2 - Algebra

Simplify.
$$ \frac{w^2 - 9}{2w^2 + 5w - 3} $$

19.
Theory 3 Marks
CH2 - Algebra

log 48 + log 18 - 2 \cdot log 24 = log t
Find the value of \( t \).
\( t = \text{.................................} \)

20.
Theory 2 Marks
CH8 - Trigonometry

Given \( \tan x = k \) and \( 0^\circ < x < 90^\circ \).
Find, in terms of \( k \),
(a) \( \tan(180^\circ - x) \), ......................................................... [1]
(b) \( \tan(90^\circ - x) \). ........................................................ [1]