Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2021 Winter Zone 2
Like Icon 0
Share
Questions: 8/11
Topic: CH3 - Functions
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH3 - Functions
Solve.$\log x + \log 5 - \log 25 = \log 10$Answer $x=$ ..................................................
2015 Summer
Theory
CH3 - Functions
Given $f(x) = \frac{1}{3x - 2}$(a) Find $f(4)$.Answer(a) .......................................................... [1](b) Solve $f(x) = \frac{1}{4}$....
2015 Summer
Theory
CH3 - Functions
Solve the following equations.(a) $\log x + \log 3 = \log 12$$\text{Answer(a) } x = \text{....................................} \quad [1]$(b) $\log x ...
2015 Summer
Theory
CH3 - Functions
These are sketches of the graphs of six functions.In the table below are four functions. Write the correct letter in the table to match each function ...
2015 Summer
Theory
CH3 - Functions
(a) Find $\log_{5}\frac{1}{25}$. Answer(a)............................................................... [1](b) Find $x$ when (i) $\log x - \log 2 = ...
2015 Summer
Theory
CH3 - Functions
The diagram shows a sketch of the graph of $y = ax^2 + bx + c$.The graph goes through the points $(-3, 0)$, $(0, -12)$ and $(2, 0)$.Find the values $a...
2015 Summer
Theory
CH3 - Functions
(a) $y$ varies inversely as the square root of $x$. $y = 5$ when $x = 9$. (i) Find the value of $y$ when $x = 25$.Answer(a)(i) $y = \text{...............
2015 Summer
Theory
CH3 - Functions
The diagram shows a sketch of the graph of $y = f(x)$ where $f(x) = \frac{x^2 + 4x + 3}{x^2 - 4x + 3}$.(a) (i) Find the equations of the three asympto...
2015 Summer
Theory
CH3 - Functions
(a) On the diagram, sketch the graph of $y = f(x)$ for $-2 \leq x \leq 4$. [2](b) Find the co-ordinates of the local maximum point and the local minim...
2015 Summer
Theory
CH3 - Functions
f(x) = 5x - 2 \quad g(x) = \frac{6}{4x + 1} , \; x \neq \frac{1}{4} \quad h(x) = 5x^2 + 3x - 2(a) Find \; f(g(1)).\text{Answer(a)} \text{................
2015 Summer

More Questions from year 2021

Theory
CH1 - Number
Work out.(a) \( 3 - 0.018 \) .......................................... [1](b) \( 0.04^2 \) .......................................... [1](c) \( \frac...
2021 Summer
Theory
CH1 - Number
(a) Write 5249.6 correct to two significant figures. ....................................................... [1] (b) Write 0.0030626 correct to three...
2021 Summer
Theory
CH1 - Number
A car travels 300 metres in 20 seconds.Find the average speed of the car in(a) metres per second, .......................................................
2021 Summer
Theory
CH2 - Algebra
Solve. (a) \( 2 - 4(5 - 2x) = 0 \) \( x = \text{...........................................} \) [2] (b) \(|2x - 5| = 9\) \( x = \text{.................
2021 Summer
Theory
CH1 - Number
Find the value of(a) $64^{0}$, ......................................................... [1](b) $64^{\frac{1}{3}}$. .....................................
2021 Summer
Theory
CH5 - Geometry
A regular polygon has 30 sides.Find the size of one exterior angle.
2021 Summer
Theory
CH2 - Algebra
Factorise.(a) $12ax - 2by + 3ay - 8bx$ .............................................. [2](b) $5x^2 - 6x - 8$ ............................................
2021 Summer
Theory
CH6 - Vectors and transformations
(a) Work out $\begin{pmatrix} 12 \\ -5 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$. [2](b) Work out the magnitude of $\begin{pmatrix} -3 ...
2021 Summer
Theory
CH2 - Algebra
Rearrange this equation to make $x$ the subject.\[ \frac{a}{2x - 3} = \frac{b}{5x} \]$x$ = .............................
2021 Summer
Theory
CH8 - Trigonometry
(a) Solve.$$\sin x = \frac{1}{2} \text{ for } 0^\circ \leq x \leq 90^\circ$$$$x = \text{.......................................} \; [1]$$(b) Solve.$$\...
2021 Summer