Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2021 Winter Zone 3
Like Icon 0
Share
Questions: 4/13
Topic: CH4 - Coordinate geometry
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH4 - Coordinate geometry
The point $A$ has co-ordinates $(2, 8)$ and the point $B$ has co-ordinates $(6, 6)$.Find the equation of the perpendicular bisector of the line $AB$.
2015 Summer
Theory
CH4 - Coordinate geometry
A is the point (2, 8) and B is the point (6, 0).(a) Find the co-ordinates of the midpoint of AB.Answer(a) $(........................, ...................
2015 Summer
Theory
CH4 - Coordinate geometry
The diagram shows the lines $x = -2$, $y = \frac{1}{2}x + 1$ and $3x + 4y = 20$.(a) Use simultaneous equations to find the co-ordinates of the point $...
2015 Summer
Theory
CH4 - Coordinate geometry
(a) On the grid, show clearly the region defined by these inequalities. $$x \geq 1 \quad y \geq 2 \quad y \geq 2x - 3 \quad 3x + 5y \leq 30$$ [7](b)...
2015 Summer
Theory
CH4 - Coordinate geometry
P is the point (0, 4), Q is the point (6, 0) and R is the point (2, 7).(a) S is the point such that $\overrightarrow{RS} = \overrightarrow{QP}$.Find t...
2015 Summer
Theory
CH4 - Coordinate geometry
A is the point $(-4, 4)$ and B is the point $(4, 10)$. Find the equation of the perpendicular bisector of $AB$.
2015 Winter
Theory
CH4 - Coordinate geometry
Find the equation of the straight line passing through $(-2, -4)$ and $(2, 0)$. Answer $\text{.....................}$ [3]
2015 Winter
Theory
CH4 - Coordinate geometry
A is the point (2, 6) and C is the point (5, 4).The equation of the line $AB$ is $y + 4x = 14$.The equation of the line $BC$ is $y = x - 1$.(a) $B$ is...
2015 Winter
Theory
CH4 - Coordinate geometry
The line $2x + 3y = 36$ intersects the x-axis at $P$ and the y-axis at $Q$. $M$ is the midpoint of $PQ$.Find the column vector $\overrightarrow{OM}$ w...
2016 Summer
Theory
CH4 - Coordinate geometry
The points $A (3, 8)$ and $B (9, 0)$ are shown on the diagram below.Find the equation of the perpendicular bisector of the line $AB$.
2016 Winter

More Questions from year 2021

Theory
CH1 - Number
Work out.(a) \( 3 - 0.018 \) .......................................... [1](b) \( 0.04^2 \) .......................................... [1](c) \( \frac...
2021 Summer
Theory
CH1 - Number
(a) Write 5249.6 correct to two significant figures. ....................................................... [1] (b) Write 0.0030626 correct to three...
2021 Summer
Theory
CH1 - Number
A car travels 300 metres in 20 seconds.Find the average speed of the car in(a) metres per second, .......................................................
2021 Summer
Theory
CH2 - Algebra
Solve. (a) \( 2 - 4(5 - 2x) = 0 \) \( x = \text{...........................................} \) [2] (b) \(|2x - 5| = 9\) \( x = \text{.................
2021 Summer
Theory
CH1 - Number
Find the value of(a) $64^{0}$, ......................................................... [1](b) $64^{\frac{1}{3}}$. .....................................
2021 Summer
Theory
CH5 - Geometry
A regular polygon has 30 sides.Find the size of one exterior angle.
2021 Summer
Theory
CH2 - Algebra
Factorise.(a) $12ax - 2by + 3ay - 8bx$ .............................................. [2](b) $5x^2 - 6x - 8$ ............................................
2021 Summer
Theory
CH6 - Vectors and transformations
(a) Work out $\begin{pmatrix} 12 \\ -5 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$. [2](b) Work out the magnitude of $\begin{pmatrix} -3 ...
2021 Summer
Theory
CH2 - Algebra
Rearrange this equation to make $x$ the subject.\[ \frac{a}{2x - 3} = \frac{b}{5x} \]$x$ = .............................
2021 Summer
Theory
CH8 - Trigonometry
(a) Solve.$$\sin x = \frac{1}{2} \text{ for } 0^\circ \leq x \leq 90^\circ$$$$x = \text{.......................................} \; [1]$$(b) Solve.$$\...
2021 Summer