No questions found
(a) Write 5.30987 correct to 3 decimal places. ............................................................. [1]
(b) Write 0.0036489 correct to 3 significant figures. ............................................................. [1]
These are the number of points \textit{The Storm} have scored in their last 20 basketball matches.
28 \hspace{0.6cm} 33 \hspace{0.6cm} 49 \hspace{0.6cm} 37 \hspace{0.6cm} 26
54 \hspace{0.6cm} 46 \hspace{0.6cm} 48 \hspace{0.6cm} 53 \hspace{0.6cm} 34
26 \hspace{0.6cm} 17 \hspace{0.6cm} 46 \hspace{0.6cm} 41 \hspace{0.6cm} 52
48 \hspace{0.6cm} 37 \hspace{0.6cm} 30 \hspace{0.6cm} 45 \hspace{0.6cm} 53
(a) \hspace{0.3cm} Construct an ordered stem and leaf diagram to show these scores and complete the key.
\begin{array}{c|c} & \text{...............................................................} \\ & \text{...............................................................} \\ & \text{...............................................................} \\ & \text{...............................................................} \\ & \text{...............................................................} \end{array}
\text{Key} \hspace{0.6cm} \text{.......} \hspace{0.6cm} | \hspace{0.6cm} \text{....... = 53} \hspace{1cm} [3]
(b) \hspace{0.3cm} Find the median score.
\text{...............................................................} \hspace{1cm} [1]
Factorise completely.
$6x^2 - 2x$
Complete this statement for the parallelogram shown.
This shape has ................ lines of symmetry and rotational symmetry of order ................ .
Simplify $4(2x-1) - 3(x-2)$.
AD is an arc of a circle, centre C, and BCD is a straight line. $BC = 9 \text{ cm}$, $CD = 6 \text{ cm}$ and angle $ACD = 90^{\circ}$.
Find the total area of the shape $ABCD$. Give your answer in terms of $\pi$.
3x + 2 \geq 5x - 6
(a) Solve the inequality. ....................................................... [2]
(b) Show your solution to part (a) on this number line.
[1]
ADC is a straight line and angle $BAC = ext{angle } DBC$.
(a) Complete the following statement.
Triangle $ACB$ is similar to triangle $\text{.......................}$ . [1]
(b) $BC = 6\text{ cm and } CD = 4\text{ cm}$ .
Calculate the length $AC$.
$AC = ext{....................... cm}$ [2]
(a) In each diagram, shade the region indicated.
$A \cap B'$
$(A \cup C) \cap B'$ [2]
(b) Use set notation to describe the shaded region.
............................................................ [1]
Expand the brackets and simplify. $$(2x - 3y)(3x - 4y)$$
Sketch the graph of \( y = |x + 2| \).
A, B, C, D \text{ and } E \text{ are points on the circle.} \text{Angle } CAD = 35^\circ \text{ and angle } EBD = 15^\circ. \text{ Find}
(a) \text{ angle } CBD,
(b) \text{ angle } CDE.
\text{ Angle } CBD = \text{........................................ [1]}
\text{ Angle } CDE = \text{....................................................... [1]}
Given $p = 5 + 2\sqrt{3}$ and $q = 5 - 2\sqrt{3}$
Find $p^2 - q^2$, writing your answer in its simplest form.
Find the value of $x$ when $5\log 2 - \log 8 = \log x$.
$x =$ ............................................ [2]
The equation of this curve is $y = ax^2 + bx + c$. Find the values of $a$, $b$ and $c$.
$a = \text{...............................}$
$b = \text{...............................}$
$c = \text{...............................}$ [3]