All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2017 Winter Zone 1
Theory
MCQ
01.
Theory 4 Marks
CH1 - Number

From the list of numbers write down
(a) the square of 4, .................................................. [1]
(b) the square root of 64, .................................................. [1]
(c) the cube of 2, .................................................. [1]
(d) the lowest common multiple (LCM) of 16 and 32. .................................................. [1]

02.
Theory 2 Marks
CH1 - Number

Work out.
(a) $(7 - 3) \times 5$ ................................. [1]
(b) $9 - 4 \times 2$ ................................. [1]

03.
Theory 2 Marks
CH2 - Algebra

(a) Write down the next term in the following sequence.
7, 11, 15, 19, 23, ...
....................................................... [1]

(b) Write down the rule for continuing the following sequence.
3, 8, 13, 18, 23, ...
....................................................... [1]

04.
Theory 2 Marks
CH1 - Number

Work out $3^0 \times 4^{-2}$.
Give your answer as a fraction.

05.
Theory 2 Marks
CH5 - Geometry


(a) Write down the letters of two congruent shapes.
.................... and .................... [1]
(b) Write down the letters of two shapes which are similar but not congruent.
.................... and .................... [1]

06.
Theory 2 Marks
CH5 - Geometry

Draw all the lines of symmetry on this regular hexagon.

07.
Theory 3 Marks
CH3 - Functions

When $f(x) = \frac{6}{x}$, find
(a) $f(2)$, ...................................................... [1]
(b) $f(-2)$, ...................................................... [1]
(c) $f\left(\frac{1}{2}\right)$. ...................................................... [1]

08.
Theory 2 Marks
CH11 - Statistics

What type of correlation is shown in each scatter diagram?


09.
Theory 4 Marks
CH9 - Sets

U = \{1, 2, 3, 4, 5, 6\}, \quad A = \{2, 4, 6\}, \quad B = \{2, 3, 5, 6\}, \quad C = \{2, 4\}
Complete the following.
(a) \( A \cap B \) = \{ \text{.....................} \} \quad [1]
(b) \( B' \) = \{ \text{.....................} \} \quad [1]
(c) \( B \cup C \) = \{ \text{.....................} \} \quad [1]
(d) \( n(B \cup C) \) = \text{.....................} \quad [1]

10.
Theory 2 Marks
CH2 - Algebra

Find the smallest integer value, $x$, such that
(a) $x > -3$, .................................... [1]
(b) $2x > 16$. .................................... [1]

11.
Theory 6 Marks
CH1 - Number, CH4 - Coordinate geometry

(a) Find the value of $6x + 7y$ when $x = 3$ and $y = -5$.
............................................................... [2]
(b) Write down an expression, in terms of $x$ and $y$, for the total cost of $x$ apples at 70 cents each and $y$ pears at 50 cents each.
.......................................................... cents [2]
(c) A line has equation $3x + 4y = 12$.
Write the equation of this line in the form $y = mx + c$.
$y =$ .............................................................. [2]

12.
Theory 2 Marks
CH8 - Trigonometry


Use the information given to work out the value of $x$.
$x = \text{.................................}$ [2]

13.
Theory 2 Marks
CH3 - Functions


Write down the equations of the two asymptotes of the graph.
............................................................
............................................................

14.
Theory 2 Marks
CH6 - Vectors and transformations


On the grid, enlarge the shaded triangle with scale factor 2, centre (3, 4).

15.
Theory 3 Marks
CH5 - Geometry

(a)
The diagram shows a circle centre $O$.
Write down the mathematical word that describes the line
(i) $OA$, ..................................................... [1]
(ii) $BC$, ..................................................... [1]

(b)
$AB$ is a diameter of a circle centre $O$.
Write down the size of angle $ACB$.
Angle $ACB$ = ..................................................... [1]