All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2023 Summer Zone 1
Theory
MCQ
01.
Theory 3 Marks
CH1 - Number

(a) Insert one pair of brackets to make the statement correct.
$3 \times 7 + 2 + 9 = 36$ [1]
(b) Work out $(0.2)^3$. .........................................................[1]
(c) Write down a prime number between 80 and 90. .........................................................[1]

02.
Theory 2 Marks
CH2 - Algebra

Solve the equation. $$7 - 5x = -3$$
$x = \text{.......................}$ [2]

03.
Theory 3 Marks
CH6 - Vectors and transformations

(a) Work out \( \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} -5 \\ 3 \end{pmatrix} \). \( \begin{pmatrix} \quad \\ \quad \end{pmatrix} \) [1]
(b) \( P \) is the point \((-3, 6)\).
\( Q \) is the point \((0, 2)\).
Find the translation vector that maps the point \( P \) onto the point \( Q \).
\( \begin{pmatrix} \quad \\ \quad \end{pmatrix} \) [2]

04.
Theory 3 Marks
CH2 - Algebra

(a) Factorise.
$$2p^2 - pq$$

[1]

(b) Expand the brackets and simplify.
$$(p - 7)(p + 3)$$

[2]

05.
Theory 3 Marks
CH2 - Algebra

(a) Work out $\frac{11}{12} + \frac{3}{4}$.
Give your answer as a mixed number in its simplest form. ............................................................ [2]
(b) Simplify $\frac{a}{x} \div \frac{b}{2y}$.
Give your answer as a single fraction. ............................................................ [1]

06.
Theory 2 Marks
CH6 - Vectors and transformations

Rotate triangle $T$ $90^{\circ}$ clockwise about the point $(2, 1)$.

07.
Theory 3 Marks
CH5 - Geometry

The interior angle of a regular polygon is 140°.
Find the number of sides of this polygon.

08.
Theory 2 Marks
CH2 - Algebra

Rearrange this equation to make $x$ the subject.
$y = 7x + 2$
$x = \text{..............................}$ [2]

09.
Theory 2 Marks
CH2 - Algebra

Simplify \( (3w^3)^3 \).

10.
Theory 2 Marks
CH5 - Geometry



$APB$ is a tangent to the circle at $P$.

Work out the value of $x$.

$x = \text{..........................}$

11.
Theory 2 Marks
CH1 - Number

Simplify $\sqrt{27} + \sqrt{12} - \sqrt{108}$.

12.
Theory 2 Marks
CH8 - Trigonometry

f(x) = 3 \sin(4x^{\circ})
Find the amplitude and period of f(x).
Amplitude = .........................................
Period = .......................................... [2]

13.
Theory 2 Marks
CH2 - Algebra

y varies inversely as \( \sqrt{x} \).
When \( x = 9 \), \( y = 2 \).
Find \( y \) in terms of \( x \).

\( y = \text{..........................} \) [2]

14.
Theory 1 Marks
CH3 - Functions

f(x) = x^{\frac{1}{7}}
Find f^{-1}(x).
f^{-1}(x) = \text{...............................} \ [1]

15.
Theory 8 Marks
CH2 - Algebra

Simplify.
(a) $\frac{3}{x+2} - \frac{2}{x-1}$ ....................................................... [3]
(b) $\frac{6x^2+x-12}{6ax-8a-3x+4}$ ....................................................... [5]