All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2023 Winter Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out how many days there are in 3 weeks.

02.
Theory 1 Marks
CH5 - Geometry

Complete the statement.

For any circle the diameter is ....................... \times the radius.

03.
Theory 1 Marks
CH1 - Number

Write down the value of $\sqrt{81}$.

04.
Theory 1 Marks
CH1 - Number

The table shows information about 230 goats.

[Table_1]

Work out the total number of kid goats.

05.
Theory 2 Marks
CH7 - Mensuration

A 5-litre container of orange juice is used to fill cups that each hold 200 millilitres.
Work out the maximum number of cups that can be filled.

06.
Theory 1 Marks
CH5 - Geometry

Draw an angle of 57° at A.

07.
Theory 2 Marks
CH2 - Algebra

Complete the sequence of the first six triangle numbers.

1, 3, ................. , 10, ................. , 21

08.
Theory 2 Marks
CH1 - Number

Write these numbers in order of size, starting with the smallest.
\( \frac{3}{4}, \ 83\%, \ 0.8, \ 0.72 \)
\[ \text{.....................} < \text{.....................} < \text{.....................} < \text{.....................} \]
\text{smallest} \hspace{30mm} [2]

09.
Theory 1 Marks
CH4 - Coordinate geometry

E is the point (3, 7) and F is the point (3, 11).
Find the coordinates of the mid-point of EF.
(................, ....................)

10.
Theory 2 Marks
CH2 - Algebra

Simplify.
$-8k + 4d - 3d - 6k$

11.
Theory 2 Marks
CH1 - Number

Work out 3 hours as a percentage of 15 hours. \text{.........................\%} [2]

12.
Theory 1 Marks
CH3 - Functions

f(x) = x^2 - 2
Work out f(6).

13.
Theory 1 Marks
CH2 - Algebra

Simplify.
$$\frac{2m}{5} \times 3$$

14.
Theory 3 Marks
CH6 - Vectors and transformations

Describe fully the \textit{single} transformation that maps shape $X$ onto shape $Y$.
.........................................................................................................................
.................................................................................................................

15.
Theory 1 Marks
CH2 - Algebra

Multiply out.
$$2(5 + 2y)$$

16.
Theory 2 Marks
CH7 - Mensuration

A semicircle has diameter 6 m.
Find the arc length of this semicircle.
Give your answer in terms of $\pi$.
............................................... m [2]

17.
Theory 3 Marks
CH5 - Geometry

The angles in any triangle add up to 180°. The angles in triangle $T$ are in the ratio 3 : 4 : 5.
Work out the size of each angle in triangle $T$.

18.
Theory 2 Marks
CH2 - Algebra

Solve the simultaneous equations.
$$x = -2y$$
$$3x - 2y = 16$$
\(x = \text{.................................}\)
\(y = \text{.................................}\) [2]

19.
Theory 2 Marks
CH1 - Number

Work out.

$$(3 \times 10^4) \times (4 \times 10^2)$$

Give your answer in standard form.

20.
Theory 2 Marks
CH10 - Probability, CH9 - Sets

The Venn diagram shows two sets, $A$ and $B$.

(a) Write down the elements of set $A$.
......................................................... [1]

(b) One of the numbers is selected at random.
Find the probability that this number is in both set $A$ and set $B$.
......................................................... [1]

21.
Theory 2 Marks
CH4 - Coordinate geometry

Write down the equation of the line with gradient 1 that passes through (0, 5).

22.
Theory 3 Marks
CH11 - Statistics

The grouped frequency table shows information about the number of hours worked by each of 80 doctors.

[Table_1]

Number of hours $(t)$ | Frequency
10 < t \leq 20 | 8
20 < t \leq 30 | 16
30 < t \leq 40 | 21
40 < t \leq 50 | 35

(a) Write down the class interval containing the median. ....................... < t \leq ....................... [1]

(b) Complete the cumulative frequency table.

[Table_2]

Number of hours $(t)$ | Cumulative frequency
t \leq 20 | 8
t \leq 30 |
t \leq 40 |
t \leq 50 |
[2]

23.
Theory 2 Marks
CH2 - Algebra

These are the first five terms in a sequence.
225 223 221 219 217
Find the $n^{th}$ term.