Courses
Past Papers
Log In
Sign Up
Past Papers
Courses
Collegeboard AP
IB DP
Cambridge IGCSE
AS & A Level
IB MYP 1-3
IB MYP 4-5
/
Cambridge IGCSE
/
Mathematics - International - 0607 - Advanced
/
0607-21-Winter-2023
/
Q8
Q8:
Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2023 Winter Zone 1
0
0
Share
Share
Page Link
https://www.sparkl.me/past-papers/cambridge-igcse/mathematics-international-0607-advanced/cambridge-igcse-mathematics-international-0607-advanced-paper-2-2023-winter-zone-1/question/5521-145108
Copy
Share via
Whatsapp
Facebook
Previous
Next
Check your Answer
Questions:
8/16
Topic: CH5 - Geometry
View Solution
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
More Questions from this Topic
Theory
CH5 - Geometry
(a) Shade two more squares so that this shape has exactly one line of symmetry. [1](b) Shade two more triangles so that this shape has rotational sym...
2016
Summer
2
Theory
CH5 - Geometry
A, B, C \text{ and } D \text{ are points on the circle centre } O.Angle BOD = 130^{\circ}.(a) Find angle DCB.Angle DCB = \text{..........................
2016
Summer
2
Theory
CH5 - Geometry
From the list above, write down the letter which hasline symmetry only, ...........................................line symmetry and rotational symmet...
2016
Winter
1
Theory
CH5 - Geometry
The interior angle of a regular polygon is 176°. Work out how many sides the polygon has.
2016
Winter
1
Theory
CH5 - Geometry
A, B, C \text{ and } D \text{ lie on the circle, centre } O. Work out the value of \( y \). \( y = \text{...............................} \) \quad...
2016
Winter
1
Theory
CH5 - Geometry
In the diagram, $DC$ is parallel to $AB$ and $AC = AB$.Work out angle $ACB$.Angle $ACB = \text{..........................}$
2016
Summer
Theory
CH5 - Geometry
A, B and C lie on a circle, centre O. The line QBP is a tangent to the circle at B. AC = BC = BP and angle QBA = 42°. Find the value of (a) angle O...
2016
Winter
3
Theory
CH5 - Geometry
(a) A regular polygon has 12 sides. Work out the sum of the interior angles of the polygon. .............................................................
2016
Summer
1
Theory
CH5 - Geometry
OABC is a parallelogram.P is the midpoint of \(CB\).\(CQ : QA = 5 : 3\).\(\overrightarrow{OA} = \mathbf{a}\) and \(\overrightarrow{OC} = \mathbf{c}\)....
2016
Winter
Theory
CH5 - Geometry
The diagram shows a pentagon.Find the value of $x$.$x = \text{........................................}$ [3]
2016
Winter
1
More Questions from year 2023
Theory
CH1 - Number
(a) Insert one pair of brackets to make the statement correct.$3 \times 7 + 2 + 9 = 36$ [1](b) Work out $(0.2)^3$. ......................................
2023
Summer
2
Theory
CH2 - Algebra
Solve the equation. $$7 - 5x = -3$$ $x = \text{.......................}$ [2]
2023
Summer
1
Theory
CH6 - Vectors and transformations
(a) Work out \( \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} -5 \\ 3 \end{pmatrix} \). \( \begin{pmatrix} \quad \\ \quad \end{pmatrix} \) [1...
2023
Summer
1
Theory
CH2 - Algebra
(a) Factorise.$$2p^2 - pq$$[1](b) Expand the brackets and simplify.$$(p - 7)(p + 3)$$[2]
2023
Summer
1
Theory
CH2 - Algebra
(a) Work out $\frac{11}{12} + \frac{3}{4}$.Give your answer as a mixed number in its simplest form. .....................................................
2023
Summer
1
Theory
CH6 - Vectors and transformations
Rotate triangle $T$ $90^{\circ}$ clockwise about the point $(2, 1)$.
2023
Summer
1
Theory
CH5 - Geometry
The interior angle of a regular polygon is 140°. Find the number of sides of this polygon.
2023
Summer
1
Theory
CH2 - Algebra
Rearrange this equation to make $x$ the subject.$y = 7x + 2$$x = \text{..............................}$ [2]
2023
Summer
1
Theory
CH2 - Algebra
Simplify \( (3w^3)^3 \).
2023
Summer
1
Theory
CH5 - Geometry
$APB$ is a tangent to the circle at $P$.Work out the value of $x$.$x = \text{..........................}$
2023
Summer