All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2023 Winter Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH5 - Geometry

The diagram shows a straight line crossing two parallel lines.
Find the value of $x$.
[Image_1: Diagram with angles 105° and $x°$]

02.
Theory 3 Marks
CH11 - Statistics

Priya rolls a die 10 times. The table shows the results.
[Table_1]

Score123456
Frequency210205

(a) Find the mode.
…………………………………………………………………………………………………………… [1]
(b) Find the interquartile range.
……………………………………………………………………………………………………………………………………… [2]

03.
Theory 2 Marks
CH4 - Coordinate geometry

A is the point (0, 7) and B is the point (-2, 1). M is the mid-point of AB.
Find the coordinates of M.
( ................. , ................. )

04.
Theory 4 Marks
CH1 - Number

(a) Write 1.8796 correct to 4 significant figures. ........................................................ [1]
(b) Work out $ (\sqrt{5})^4 $. ........................................................ [1]
(c) $ x $ is an integer and $ |x| \leq 1 $.
Write down the values of $ x $. ........................................................ [1]
(d) Find the highest common factor (HCF) of 24 and 42. ........................................................ [1]

05.
Theory 2 Marks
CH1 - Number

A taxi fare, $F$, consists of a fixed charge of $x$ plus $0.65 per kilometre travelled.

Find a formula for $F$ for a journey of $y$ kilometres.

06.
Theory 3 Marks
CH2 - Algebra

Find the next term and the $n^{th}$ term of this sequence.
0 \quad 1 \quad 4 \quad 9 \quad 16 \quad ....
next term = \text{...............................................}
$n^{th}$ term = \text{...............................................} [3]

07.
Theory 4 Marks
CH2 - Algebra

$J = h^3 + k^3$
(a) Find the value of $J$ when $h = 3$ and $k = 4$.
$J = \text{.................................}$ [2]
(b) Rearrange the formula to write $h$ in terms of $J$ and $k$.
$h = \text{.................................}$ [2]

08.
Theory 3 Marks
CH5 - Geometry

The length of the diagonal of the rectangle is 10 cm.
The length of the rectangle is 8 cm.

Work out the width of the rectangle.


09.
Theory 2 Marks
CH10 - Probability

Ulrich has these cards.

He picks 2 cards at random without replacement.
Find the probability that both cards have the letter A.

10.
Theory 1 Marks
CH1 - Number

$5^w \div 5^{13} = 25$
Find the value of $w$.
w = \text{............................} \text{ [1] }

11.
Theory 3 Marks
CH7 - Mensuration

The volume of a cone is $18\pi\text{ cm}^3$.
The height of the cone is the same as the diameter of its base.
Find the radius of the base.
.......................................... cm [3]

12.
Theory 2 Marks
CH5 - Geometry


ABCD is a cyclic quadrilateral.
ABV is a straight line and TU is a tangent to the circle at C.
Find the value of $x$ and the value of $y$.
$x = \text{.................................}$
$y = \text{.................................}$ [2]

13.
Theory 2 Marks
CH2 - Algebra

y varies inversely as the square root of $(x + 1)$.
When $x = 8$, $y = 5$.
Find $y$ in terms of $x$.

14.
Theory 4 Marks
CH4 - Coordinate geometry

The line $L$ is perpendicular to the line $2y = 5 - x$ and passes through the point $(2, 3)$.
Find the equation of line $L$.
Give your answer in the form $y = mx + c$.
$y = \text{...................................}$

15.
Theory 2 Marks
CH1 - Number

Rationalise the denominator. $$\frac{\sqrt{5}}{\sqrt{5} - 1}$$

16.
Theory 2 Marks
CH2 - Algebra

$\log 20 + \log x = 2$
Find the value of $x$.
$x = \text{............................}$ [2]