All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2023 Winter Zone 2
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out $-45 \div -15$.

02.
Theory 1 Marks
CH1 - Number

Write 4049 correct to 2 significant figures.

03.
Theory 2 Marks
CH2 - Algebra

Solve $7x - 5 = 37$.
$x = \text{.............................}$ [2]

04.
Theory 1 Marks
CH1 - Number

Find 2\% of $400.
$\text{.....................} \ [1]

05.
Theory 2 Marks
CH11 - Statistics

This is a list of test grades.
7 7 5 3 4 3 3 7 1 7 2 7
(a) Find the mode. ................................................ [1]
(b) Find the range. ............................................... [1]

06.
Theory 5 Marks
CH1 - Number

(a) Work out $\frac{3}{4} - \frac{1}{5}$.
..................................................\ [2]

(b) Work out $2\frac{3}{4} \times 2\frac{2}{3}$.
Give your answer as a mixed number in its simplest form.
..................................................\ [3]

07.
Theory 1 Marks
CH1 - Number

Write down an irrational number between 3 and 4.

08.
Theory 1 Marks
CH1 - Number

Work out the highest common factor (HCF) of 60 and 42.

09.
Theory 2 Marks
CH2 - Algebra

Expand $3p^2(4 - 3p)$.

10.
Theory 5 Marks
CH4 - Coordinate geometry

(a) $P$ is the point $(-5, 3)$ and $Q$ is the point $(2, -1)$.
Find the coordinates of the mid-point of $PQ$.
$(....................., .....................)$ [2]

(b) Line $L$ is perpendicular to the line $ y = 3x - 2.$
The point $(6, 1)$ is on line $L$.

Find the equation of line $L$.
Give your answer in the form $y = mx + c$.
$y = .................................................$ [3]

11.
Theory 4 Marks
CH9 - Sets

(a) On the Venn diagram, shade $(A \cup B)'$.

[1]
(b) Use set notation to describe the shaded region.

.............................................. [1]
(c) There are 35 students in a class. The students are asked if they like athletics $(A)$ or cricket $(C)$.
$n(A) = 15$
$n(C) = 14$
$n(A \cap C) = 5$
Complete the Venn diagram below by writing the number of elements in each subset.

[2]

12.
Theory 3 Marks
CH2 - Algebra

Solve $x^2 - 2x - 6 = 0$.
Give your answer in the form $a \pm \sqrt{b}$ where $a$ and $b$ are integers.

13.
Theory 2 Marks
CH6 - Vectors and transformations

Find the magnitude of the vector \( \begin{pmatrix} -6 \\ 8 \end{pmatrix} \).

14.
Theory 3 Marks
CH2 - Algebra

Solve $\frac{x+1}{x-1} - \frac{1}{3} = 0$.
$x= \text{...........................}$ [3]

15.
Theory 3 Marks
CH3 - Functions

The graph shows $f(x) = a \cos(bx)^\circ$.

(a) Find the value of $a$ and the value of $b$.

\( a = \text{......................................} \)
\( b = \text{......................................} \) [2]

(b) Write down the period of $f(x)$.

\( \text{............................................................} \) [1]

16.
Theory 4 Marks
CH2 - Algebra

(a) $\log_a 64 = 2$
Write down the value of $a$. [1]

(b) Simplify $\log 3 + 3 \log 2 - \log 12$. [3]