No questions found
Work out $-45 \div -15$.
Write 4049 correct to 2 significant figures.
Solve $7x - 5 = 37$.
$x = \text{.............................}$ [2]
Find 2\% of $400.
$\text{.....................} \ [1]
This is a list of test grades.
7 7 5 3 4 3 3 7 1 7 2 7
(a) Find the mode. ................................................ [1]
(b) Find the range. ............................................... [1]
(a) Work out $\frac{3}{4} - \frac{1}{5}$.
..................................................\ [2]
(b) Work out $2\frac{3}{4} \times 2\frac{2}{3}$.
Give your answer as a mixed number in its simplest form.
..................................................\ [3]
Write down an irrational number between 3 and 4.
Work out the highest common factor (HCF) of 60 and 42.
Expand $3p^2(4 - 3p)$.
(a) $P$ is the point $(-5, 3)$ and $Q$ is the point $(2, -1)$.
Find the coordinates of the mid-point of $PQ$.
$(....................., .....................)$ [2]
(b) Line $L$ is perpendicular to the line $ y = 3x - 2.$
The point $(6, 1)$ is on line $L$.
Find the equation of line $L$.
Give your answer in the form $y = mx + c$.
$y = .................................................$ [3]
(a) On the Venn diagram, shade $(A \cup B)'$.
[1]
(b) Use set notation to describe the shaded region.
.............................................. [1]
(c) There are 35 students in a class. The students are asked if they like athletics $(A)$ or cricket $(C)$.
$n(A) = 15$
$n(C) = 14$
$n(A \cap C) = 5$
Complete the Venn diagram below by writing the number of elements in each subset.
[2]
Solve $x^2 - 2x - 6 = 0$.
Give your answer in the form $a \pm \sqrt{b}$ where $a$ and $b$ are integers.
Find the magnitude of the vector \( \begin{pmatrix} -6 \\ 8 \end{pmatrix} \).
Solve $\frac{x+1}{x-1} - \frac{1}{3} = 0$.
$x= \text{...........................}$ [3]
The graph shows $f(x) = a \cos(bx)^\circ$.
(a) Find the value of $a$ and the value of $b$.
\( a = \text{......................................} \)
\( b = \text{......................................} \) [2]
(b) Write down the period of $f(x)$.
\( \text{............................................................} \) [1]
(a) $\log_a 64 = 2$
Write down the value of $a$. [1]
(b) Simplify $\log 3 + 3 \log 2 - \log 12$. [3]