Courses
Past Papers
Log In
Sign Up
Past Papers
Courses
Collegeboard AP
IB DP
Cambridge IGCSE
AS & A Level
IB MYP 1-3
IB MYP 4-5
/
Cambridge IGCSE
/
Mathematics - International - 0607 - Advanced
/
0607-41-Winter-2015
/
Q5
Q5:
Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2015 Winter Zone 1
2
0
Share
Share
Page Link
https://www.sparkl.me/past-papers/cambridge-igcse/mathematics-international-0607-advanced/cambridge-igcse-mathematics-international-0607-advanced-paper-4-2015-winter-zone-1/question/5416-142325
Copy
Share via
Whatsapp
Facebook
Previous
Next
Check your Answer
Questions:
5/11
Topic: CH8 - Trigonometry
View Solution
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
More Questions from this Topic
Theory
CH8 - Trigonometry
The graph of $y = a \sin (x + b)^\circ$ is shown in the diagram.Find the value of $a$ and the value of $b$.$a = \text{...................................
2016
Summer
1
Theory
CH8 - Trigonometry
The diagram shows the graph of $y = a \sin(bx)^{\circ}$, for $0 \leq x \leq 90$.Find the value of $a$ and the value of $b$.$a = \text{...................
2016
Winter
2
Theory
CH8 - Trigonometry
The diagram shows a triangular prism with a horizontal base $ABCD$. $X$ is a point on the line $AQ$. $AB = 20 \text{cm}$, $BC = 10 \text{cm}$, $CQ = 9...
2016
Winter
2
Theory
CH8 - Trigonometry
Roberta starts from a point A and walks 1 km North to a point B. She then walks 2 km East to a point C, then walks 3 km South to a point D and finally...
2016
Winter
2
Theory
CH8 - Trigonometry
(a) $\cos x = \frac{1}{3}$ for $0^\circ < x < 90^\circ$.Find the exact value of $\sin x$.Give your answer as a surd.$\sin x = \text{.....................
2016
Winter
2
Theory
CH8 - Trigonometry
A ship sails on the following course. 60 km on a bearing of 025\degree from $A$ to $B$ 80 km on a bearing of 115\degree from $B$ to $C$ 75 km on ...
2016
Winter
2
Theory
CH8 - Trigonometry
(a) Find $AC$. (b) Calculate angle $CAD$.(c) Calculate the area of the quadrilateral $ABCD$.
2015
Summer
2
Theory
CH8 - Trigonometry
The graph of $y = a \cos(bx)^\circ$ has a maximum point at (360, 3) and a minimum point at (450, -3).Find the value of $a$ and the value of $b$.Answer...
2015
Winter
1
Theory
CH8 - Trigonometry
Calculate (a) $BC$, Answer(a) ............................................................. cm [2] (b) angle $CAD$, Answer(b) .......................
2015
Winter
2
Theory
CH8 - Trigonometry
(a) On the diagram, sketch the graph of $y = f(x)$ for values of $x$ between $-90$ and $360$. [3](b) Solve the equation $f(x) = 5$ for values of $x$ b...
2015
Summer
2
More Questions from year 2015
Theory
CH1 - Number
(a) Write 4725.6 correct to two significant figures. Answer(a) .................................................. [1] (b) Write 0.01026 correct to t...
2015
Summer
1
Theory
CH2 - Algebra
Expand and simplify.(a) \(-3x(2-x)-(3x^2-7)\)Answer(a) ...................................................[2](b) \((5x-3y)(2y-5x)\)Answer(b) ............
2015
Summer
2
Theory
CH1 - Number
Find the exact value of $27^{\frac{1}{3}}$.
2015
Summer
2
Theory
CH2 - Algebra
Simplify \( (16x^8y^2)^{\frac{1}{2}} \).
2015
Summer
1
Theory
CH1 - Number
(a) Simplify.\[ \sqrt{27} + \sqrt{147} \]Answer(a) ............................................................... [2](b) Rationalise the denominator....
2015
Summer
1
Theory
CH3 - Functions
Solve.$\log x + \log 5 - \log 25 = \log 10$Answer $x=$ ..................................................
2015
Summer
1
Theory
CH1 - Number
There are 400 students at a school.$\frac{2}{5}$ of the students are boys.70\% of the girls can swim.The ratio of boys that cannot swim to girls that ...
2015
Summer
2
Theory
CH5 - Geometry
(a) Write down the value of $x$.Answer(a) $x= \text{..................................................}$ [1](b) Find the value of $y$.Answer(b) $y= \t...
2015
Summer
2
Theory
CH3 - Functions
Given $f(x) = \frac{1}{3x - 2}$(a) Find $f(4)$.Answer(a) .......................................................... [1](b) Solve $f(x) = \frac{1}{4}$....
2015
Summer
1
Theory
CH6 - Vectors and transformations
ABCD is a trapezium. $AB = 2DC$, $DM = 2MC$, and $AN = 3NB$. $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$. (a) Write $\overrightarrow{MC...
2015
Summer
2