Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2020 Summer Zone 3
Like Icon 0
Share
Questions: 5/12
Topic: CH6 - Vectors and transformations
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH6 - Vectors and transformations
ABCD is a trapezium. $AB = 2DC$, $DM = 2MC$, and $AN = 3NB$. $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$. (a) Write $\overrightarrow{MC...
2015 Summer
Theory
CH6 - Vectors and transformations
Find the magnitude of \( \begin{pmatrix} -6 \\ 4 \end{pmatrix} \).Write your answer in surd form as simply as possible.
2015 Summer
Theory
CH6 - Vectors and transformations
(a) Describe fully the single transformation that maps triangle A onto triangle B.Answer(a) .............................................................
2015 Summer
Theory
CH6 - Vectors and transformations
(a) Describe fully the single transformation that maps triangle A onto triangle B.Answer(a) .............................................................
2015 Summer
Theory
CH6 - Vectors and transformations
(a) (i) Rotate triangle $A$ through $90^\circ$ anticlockwise about the origin.Label the image $C$.[2](ii) Reflect triangle $C$ in the $x$-axis.Label t...
2015 Summer
Theory
CH6 - Vectors and transformations
a = \begin{pmatrix} 5 \\ -12 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ -3 \end{pmatrix}(a) Find \ a - 3b. [2](b) Work out \ |a|. [2]
2015 Winter
Theory
CH6 - Vectors and transformations
Let \( \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) and \( \mathbf{q} = \begin{pmatrix} 1 \\ 6 \end{pmatrix} \) Find \( 2\mathbf{p} - 3\mathb...
2015 Winter
Theory
CH6 - Vectors and transformations
(a) \[ \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} 14 \\ 8 \end{pmatrix} \] (i) Find $2 \mathbf{p} + 3 \math...
2015 Winter
Theory
CH6 - Vectors and transformations
The transformation P is a reflection in the $x$-axis.The transformation Q is a rotation of $90^\circ$ clockwise about the origin.(a) Write down the tr...
2015 Winter
Theory
CH6 - Vectors and transformations
(a) (i) Describe fully the \textit{single} transformation that maps triangle $T$ onto triangle $U$.Answer(a)(i) \text{...........................}\tex...
2015 Winter

More Questions from year 2020

Theory
CH7 - Mensuration
A cuboid has a square base of side 10 cm and a volume of 1200 cm^3.Work out the height of the cuboid.
2020 Summer
Theory
CH6 - Vectors and transformations
p = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \quad q = \begin{pmatrix} 1 \\ -2 \end{pmatrix}(a) Find \ \mathbf{p+q}. \ \begin{pmatrix} \ \ \ \ \ \ \ \ \e...
2020 Summer
Theory
CH1 - Number
Work out $\frac{3}{4} \div 2\frac{1}{2}$.Give your answer as a fraction in its lowest terms.
2020 Summer
Theory
CH1 - Number
A truck of length 10 m passes a gate of length 2 m. The speed of the truck is 8 m/s.Find the time the truck takes to completely pass the gate.
2020 Summer
Theory
CH7 - Mensuration
Find the volume of a cone with radius 3 cm and perpendicular height 8 cm. Give your answer in terms of $\pi$. .......................................$...
2020 Summer
Theory
CH8 - Trigonometry
Work out the value of $x$.$x = \text{...........................}$
2020 Summer
Theory
CH2 - Algebra
Simplify.(a) \( \frac{15w^{15}}{3w^3} \) .............................................................. [2](b) \( (125y^6)^{\frac{2}{3}} \) .............
2020 Summer
Theory
CH2 - Algebra
Rearrange the formula to write $h$ in terms of $\pi$, $r$ and $A$.$A = 2\pi rh + 3\pi r^2$$h = \text{.................................}$ [2]
2020 Summer
Theory
CH5 - Geometry
A, B \text{ and } C \text{ are points on a circle.}T\!A \text{ is a tangent to the circle at } A.C\!A = C\!B \text{ and angle } B\!A\!T = 70^\circ.\te...
2020 Summer
Theory
CH1 - Number
When Jack sells a computer for $264 he makes a profit of 20%.Work out the price Jack paid for the computer.$ ..............................
2020 Summer