Past Papers
Q5: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2020 Summer Zone 3
0
0
Share
Questions: 5/12
Topic: CH6 - Vectors and transformations
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon

More Questions from this Topic

Theory
CH6 - Vectors and transformations
Write the vectors $\mathbf{p}$, $\mathbf{q}$ and $\mathbf{r}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.p = ........................................q ...
2016 Summer
1
Theory
CH6 - Vectors and transformations
(a) $ \mathbf{u} = \begin{pmatrix} -3 \\ -2 \end{pmatrix} $ and $ \mathbf{v} = \begin{pmatrix} -5 \\ -3 \end{pmatrix} $(i) Find $ \mathbf{u} + \mathbf...
2016 Winter
1
Theory
CH6 - Vectors and transformations
Describe fully the single transformation that is the \textbf{inverse} of(a) a reflection in the line $y = x$, ...........................................
2016 Winter
2
Theory
CH6 - Vectors and transformations
Triangle B is the image of triangle A after a reflection. Triangle C is the image of triangle B after an enlargement, scale factor 2. Triangle D is th...
2016 Winter
2
Theory
CH6 - Vectors and transformations
Describe fully the single transformation that maps(a) triangle A onto triangle B,........................................................................
2016 Winter
2
Theory
CH6 - Vectors and transformations
ABCD is a trapezium. $AB = 2DC$, $DM = 2MC$, and $AN = 3NB$. $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$. (a) Write $\overrightarrow{MC...
2015 Summer
2
Theory
CH6 - Vectors and transformations
Find $|p|$, giving your answer in the form $3\sqrt{a}$. Where $p = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$.
2017 Summer
1
Theory
CH6 - Vectors and transformations
(a) Describe fully the single transformation that maps triangle A onto triangle B.Answer(a) .............................................................
2015 Summer
2
Theory
CH6 - Vectors and transformations
(a) \[ \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} 14 \\ 8 \end{pmatrix} \] (i) Find $2 \mathbf{p} + 3 \math...
2015 Winter
2
Theory
CH6 - Vectors and transformations
Find the magnitude of \( \begin{pmatrix} -6 \\ 4 \end{pmatrix} \).Write your answer in surd form as simply as possible.
2015 Summer
2

More Questions from year 2020

Theory
CH7 - Mensuration
A cuboid has a square base of side 10 cm and a volume of 1200 cm^3.Work out the height of the cuboid.
2020 Summer
Theory
CH6 - Vectors and transformations
p = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \quad q = \begin{pmatrix} 1 \\ -2 \end{pmatrix}(a) Find \ \mathbf{p+q}. \ \begin{pmatrix} \ \ \ \ \ \ \ \ \e...
2020 Summer
Theory
CH1 - Number
Work out $\frac{3}{4} \div 2\frac{1}{2}$.Give your answer as a fraction in its lowest terms.
2020 Summer
Theory
CH1 - Number
A truck of length 10 m passes a gate of length 2 m. The speed of the truck is 8 m/s.Find the time the truck takes to completely pass the gate.
2020 Summer
Theory
CH7 - Mensuration
Find the volume of a cone with radius 3 cm and perpendicular height 8 cm. Give your answer in terms of $\pi$. .......................................$...
2020 Summer
Theory
CH8 - Trigonometry
Work out the value of $x$.$x = \text{...........................}$
2020 Summer
Theory
CH2 - Algebra
Simplify.(a) \( \frac{15w^{15}}{3w^3} \) .............................................................. [2](b) \( (125y^6)^{\frac{2}{3}} \) .............
2020 Summer
Theory
CH2 - Algebra
Rearrange the formula to write $h$ in terms of $\pi$, $r$ and $A$.$A = 2\pi rh + 3\pi r^2$$h = \text{.................................}$ [2]
2020 Summer
Theory
CH5 - Geometry
A, B \text{ and } C \text{ are points on a circle.}T\!A \text{ is a tangent to the circle at } A.C\!A = C\!B \text{ and angle } B\!A\!T = 70^\circ.\te...
2020 Summer
Theory
CH1 - Number
When Jack sells a computer for $264 he makes a profit of 20%.Work out the price Jack paid for the computer.$ ..............................
2020 Summer