Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2015 Summer Zone 2
Like Icon 0
Share
Questions: 3/12
Topic: CH6 - Vectors and transformations
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH6 - Vectors and transformations
ABCD is a trapezium. $AB = 2DC$, $DM = 2MC$, and $AN = 3NB$. $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$. (a) Write $\overrightarrow{MC...
2015 Summer
Theory
CH6 - Vectors and transformations
Find the magnitude of \( \begin{pmatrix} -6 \\ 4 \end{pmatrix} \).Write your answer in surd form as simply as possible.
2015 Summer
Theory
CH6 - Vectors and transformations
(a) Describe fully the single transformation that maps triangle A onto triangle B.Answer(a) .............................................................
2015 Summer
Theory
CH6 - Vectors and transformations
(a) Describe fully the single transformation that maps triangle A onto triangle B.Answer(a) .............................................................
2015 Summer
Theory
CH6 - Vectors and transformations
(a) (i) Rotate triangle $A$ through $90^\circ$ anticlockwise about the origin.Label the image $C$.[2](ii) Reflect triangle $C$ in the $x$-axis.Label t...
2015 Summer
Theory
CH6 - Vectors and transformations
a = \begin{pmatrix} 5 \\ -12 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ -3 \end{pmatrix}(a) Find \ a - 3b. [2](b) Work out \ |a|. [2]
2015 Winter
Theory
CH6 - Vectors and transformations
Let \( \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) and \( \mathbf{q} = \begin{pmatrix} 1 \\ 6 \end{pmatrix} \) Find \( 2\mathbf{p} - 3\mathb...
2015 Winter
Theory
CH6 - Vectors and transformations
(a) \[ \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} 14 \\ 8 \end{pmatrix} \] (i) Find $2 \mathbf{p} + 3 \math...
2015 Winter
Theory
CH6 - Vectors and transformations
The transformation P is a reflection in the $x$-axis.The transformation Q is a rotation of $90^\circ$ clockwise about the origin.(a) Write down the tr...
2015 Winter
Theory
CH6 - Vectors and transformations
(a) (i) Describe fully the \textit{single} transformation that maps triangle $T$ onto triangle $U$.Answer(a)(i) \text{...........................}\tex...
2015 Winter

More Questions from year 2015

Theory
CH1 - Number
(a) Write 4725.6 correct to two significant figures. Answer(a) .................................................. [1] (b) Write 0.01026 correct to t...
2015 Summer
Theory
CH2 - Algebra
Expand and simplify.(a) \(-3x(2-x)-(3x^2-7)\)Answer(a) ...................................................[2](b) \((5x-3y)(2y-5x)\)Answer(b) ............
2015 Summer
Theory
CH1 - Number
Find the exact value of $27^{\frac{1}{3}}$.
2015 Summer
Theory
CH2 - Algebra
Simplify \( (16x^8y^2)^{\frac{1}{2}} \).
2015 Summer
Theory
CH1 - Number
(a) Simplify.\[ \sqrt{27} + \sqrt{147} \]Answer(a) ............................................................... [2](b) Rationalise the denominator....
2015 Summer
Theory
CH3 - Functions
Solve.$\log x + \log 5 - \log 25 = \log 10$Answer $x=$ ..................................................
2015 Summer
Theory
CH1 - Number
There are 400 students at a school.$\frac{2}{5}$ of the students are boys.70\% of the girls can swim.The ratio of boys that cannot swim to girls that ...
2015 Summer
Theory
CH5 - Geometry
(a) Write down the value of $x$.Answer(a) $x= \text{..................................................}$ [1](b) Find the value of $y$.Answer(b) $y= \t...
2015 Summer
Theory
CH3 - Functions
Given $f(x) = \frac{1}{3x - 2}$(a) Find $f(4)$.Answer(a) .......................................................... [1](b) Solve $f(x) = \frac{1}{4}$....
2015 Summer
Theory
CH6 - Vectors and transformations
ABCD is a trapezium. $AB = 2DC$, $DM = 2MC$, and $AN = 3NB$. $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$. (a) Write $\overrightarrow{MC...
2015 Summer