Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2021 Summer Zone 2
Like Icon 0
Share
Questions: 5/13
Topic: CH8 - Trigonometry
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH8 - Trigonometry
(a) Find $AC$. (b) Calculate angle $CAD$.(c) Calculate the area of the quadrilateral $ABCD$.
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows a fence panel $ABCDE$.The vertical edges $AE$ and $BC$ are of length 120 cm and the horizontal base $EC$ is of length 180 cm.$D$ is ...
2015 Summer
Theory
CH8 - Trigonometry
(a) On the diagram, sketch the graph of $y = f(x)$ for values of $x$ between $-90$ and $360$. [3](b) Solve the equation $f(x) = 5$ for values of $x$ b...
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows the plan of a field $ABCD$ with a path from $A$ to $C$. (a) Calculate(i) the obtuse angle $ABC$, Answer(a)(i) .........................
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows a field $ABCD$ with a path from $A$ to $C$. $AC = 150\text{m}$, $AD = 120\text{m}$ and $CD = 235\text{m}$. Angle $ABC = 90^{\circ}...
2015 Summer
Theory
CH8 - Trigonometry
The graph of $y = a \cos(bx)^\circ$ has a maximum point at (360, 3) and a minimum point at (450, -3).Find the value of $a$ and the value of $b$.Answer...
2015 Winter
Theory
CH8 - Trigonometry
Calculate (a) $BC$, Answer(a) ............................................................. cm [2] (b) angle $CAD$, Answer(b) .......................
2015 Winter
Theory
CH8 - Trigonometry
In the diagram, $ABC$ is a straight line and $BFED$ is a rectangle. (a) Find $BC$.Answer(a) .............................................................
2015 Winter
Theory
CH8 - Trigonometry
The graph of $y = a \sin (x + b)^\circ$ is shown in the diagram.Find the value of $a$ and the value of $b$.$a = \text{...................................
2016 Summer
Theory
CH8 - Trigonometry
The diagram shows the graph of $y = a \sin(bx)^{\circ}$, for $0 \leq x \leq 90$.Find the value of $a$ and the value of $b$.$a = \text{...................
2016 Winter

More Questions from year 2021

Theory
CH1 - Number
Work out.(a) \( 3 - 0.018 \) .......................................... [1](b) \( 0.04^2 \) .......................................... [1](c) \( \frac...
2021 Summer
Theory
CH1 - Number
(a) Write 5249.6 correct to two significant figures. ....................................................... [1] (b) Write 0.0030626 correct to three...
2021 Summer
Theory
CH1 - Number
A car travels 300 metres in 20 seconds.Find the average speed of the car in(a) metres per second, .......................................................
2021 Summer
Theory
CH2 - Algebra
Solve. (a) \( 2 - 4(5 - 2x) = 0 \) \( x = \text{...........................................} \) [2] (b) \(|2x - 5| = 9\) \( x = \text{.................
2021 Summer
Theory
CH1 - Number
Find the value of(a) $64^{0}$, ......................................................... [1](b) $64^{\frac{1}{3}}$. .....................................
2021 Summer
Theory
CH5 - Geometry
A regular polygon has 30 sides.Find the size of one exterior angle.
2021 Summer
Theory
CH2 - Algebra
Factorise.(a) $12ax - 2by + 3ay - 8bx$ .............................................. [2](b) $5x^2 - 6x - 8$ ............................................
2021 Summer
Theory
CH6 - Vectors and transformations
(a) Work out $\begin{pmatrix} 12 \\ -5 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$. [2](b) Work out the magnitude of $\begin{pmatrix} -3 ...
2021 Summer
Theory
CH2 - Algebra
Rearrange this equation to make $x$ the subject.\[ \frac{a}{2x - 3} = \frac{b}{5x} \]$x$ = .............................
2021 Summer
Theory
CH8 - Trigonometry
(a) Solve.$$\sin x = \frac{1}{2} \text{ for } 0^\circ \leq x \leq 90^\circ$$$$x = \text{.......................................} \; [1]$$(b) Solve.$$\...
2021 Summer