All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2015 Summer Zone 2
Theory
MCQ
01.
Theory 2 Marks
CH2 - Algebra

(a) Work out $(0.3)^2$.
Answer(a) ..................................................... [1]
(b) Find $n$ when $\frac{5}{6} = \frac{n}{24}$.
Answer(b) $n$ = ................................................. [1]

02.
Theory 3 Marks
CH1 - Number

(a) Find the value of
(i) $25^0$,
Answer(a)(i) ............................................................. [1]
(ii) $100^{\frac{3}{2}}$.
Answer(a)(ii) ............................................................. [1]
(b) Write as a single power of 5.
$$\frac{5^{12}}{5^3 \times 5^2}$$
Answer(b) ............................................................. [1]

03.
Theory 3 Marks
CH6 - Vectors and transformations

Find the magnitude of \( \begin{pmatrix} -6 \\ 4 \end{pmatrix} \).
Write your answer in surd form as simply as possible.

04.
Theory 4 Marks
CH10 - Probability

Anneke, Babar, Céline, and Dieter each throw the same biased die.
They want to find the probability of throwing a six with this die.
They each throw the die a different number of times.

These are their results.

[Table_1]

(a) Complete the table below to show the relative frequencies of their results.
Write your answers as decimals.

[Table_2]

(b) Whose result gives the best estimate of the probability of throwing a six with the biased die?
Give a reason for your answer.

$\text{Answer(b)}$ ................................................ because ..............................................................................
............................................................................................................................. [1]

(c) The probability of throwing a six with a different biased die is 0.41.
Find the expected number of sixes when this die is thrown 600 times.

$\text{Answer(c)}$ ...................................................................................... [1]

05.
Theory 3 Marks
CH4 - Coordinate geometry

A is the point (2, 8) and B is the point (6, 0).
(a) Find the co-ordinates of the midpoint of AB.
Answer(a) $(........................, ........................)$ [1]
(b) Find the gradient of AB.
Answer(b) .................................................... [2]

06.
Theory 2 Marks
CH1 - Number

Simplify $(5 + \sqrt{3})^2$.

07.
Theory 3 Marks
CH2 - Algebra

Solve.
$2x + 3 \leq 4(x - 2)$

Answer ....................................................... [3]

08.
Theory 3 Marks
CH7 - Mensuration

The diagram shows a shape made from a cylinder and a cone. The cylinder and cone have a common radius of 6 m. The height of the cylinder is 10 m and the height of the cone is 3 m.
Calculate the total volume of the shape.
Leave your answer as a multiple of \( \pi \).


09.
Theory 4 Marks
CH2 - Algebra

Solve these simultaneous equations.
$$5x + 2y = 11$$
$$4x - 3y = 18$$

Answer \( x= \) ..................................................
\( y= \) ................................................. [4]

10.
Theory 5 Marks
CH3 - Functions

Solve the following equations.

(a) $\log x + \log 3 = \log 12$

$\text{Answer(a) } x = \text{....................................} \quad [1]$

(b) $\log x = 3$

$\text{Answer(b) } x = \text{....................................} \quad [1]$

(c) $2\log x - \log 5 = \log 20$

$\text{Answer(c) } x = \text{....................................} \quad [3]$

11.
Theory 4 Marks
CH5 - Geometry

A, B, C and D are points on the circle, centre O.
P Q is a tangent to the circle at the point C.
Angle PCD = 55^∘ and angle ADO = 40^∘.

Find

(a) angle COD,
Answer(a) ................................................... [2]

(b) angle DAC,
Answer(b) ................................................... [1]

(c) angle ABC.
Answer(c) ................................................... [1]

[Image of the described circle: A, B, C, D on the circle, with tangent P Q]

12.
Theory 4 Marks
CH3 - Functions

These are sketches of the graphs of six functions.


In the table below are four functions. Write the correct letter in the table to match each function with its graph.

[Table_1]

\( \begin{array}{|c|c|} \hline \text{Function} & \text{Graph} \\ \hline f(x) = 2x - 3 & \text{..................} \\ f(x) = (x - 2)^2 & \text{..................} \\ f(x) = 4x - x^3 & \text{..................} \\ f(x) = 5 - 2x & \text{..................} \\ \hline \end{array} \)