No questions found
Sara and Klaus share some money in the ratio 5 : 4. Klaus receives $48.
Work out how much Sara receives.
$ .............................................. [2]
From the list above, write down the letter which has
line symmetry only, ...........................................
line symmetry and rotational symmetry, ....................................
rotational symmetry only. .......................................
The list shows the quiz scores of 13 students.
11 11 11 12 12 13 14 15 15 16 16 19 19
Find
(a) the mode, ............................................... [1]
(b) the median, ............................................. [1]
(c) the upper quartile. ..................................... [1]
Write $4.07 \times 10^{-3}$ as an ordinary number.
Given the equation $v = u + at$:
(a) Find $v$ when $u = 5$, $a = -1$ and $t = 1.5$.
$v =$ ext{.................................} [2]
(b) Rearrange the formula to write $a$ in terms of $t$, $u$ and $v$.
$a =$ ext{.................................} [2]
Work out $\frac{8}{9} - \frac{7}{18}$, giving your answer in its lowest terms.
The interior angle of a regular polygon is 176°.
Work out how many sides the polygon has.
A, B, C \text{ and } D \text{ lie on the circle, centre } O.
Work out the value of \( y \).
\( y = \text{...............................} \) \quad [3]
On each Venn diagram, shade the area indicated.
[Image_1: (P \cap Q)']
[Image_2: W \cap V' \cap X']
Multiply out the brackets and simplify.
$(2\sqrt{3} - 1)(\sqrt{3} + 2)$
Solve the equation.
\(|x - 3| = 1\)
Find the value of $25^{-\frac{3}{2}}$.
x is positive and $x^8 = 3^4$.
Find the exact value of x.
$x = \text{...............................}$ [2]
The roots of the quadratic equation $x^2 + ax + b = 0$ are 5 and -2.
Find the value of $a$ and the value of $b$.
$a = \text{.........................................}$
$b = \text{.........................................}$ [3]
y is inversely proportional to the square root of \( (x - 3) \).
When \( x = 7, y = 3 \).
Find \( y \) in terms of \( x \).
\[ y = \text{..............................................} \] [2]
The diagram shows the graph of $y = a \sin(bx)^{\circ}$, for $0 \leq x \leq 90$.
Find the value of $a$ and the value of $b$.
$a = \text{.................................}$
$b = \text{.................................}$
(a) $2 \log 3 = \log k$
Find the value of $k$.
$k =$ ............................................................ [1]
(b) $\log 5 - \log 2 = \log p$
Find the value of $p$.
$p =$ ............................................................ [1]