All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2016 Winter Zone 1
Theory
MCQ
01.
Theory 2 Marks
CH4 - Coordinate geometry

(a) Write down the co-ordinates of point $A$.
( ext{................,................} ) [1]
(b) Plot the point $(4, -2)$. Label this point $B$. [1]

02.
Theory 1 Marks
CH7 - Mensuration

Find the perimeter of this triangle. ................... cm

03.
Theory 2 Marks
CH1 - Number

Write down all the factors of 35.

04.
Theory 2 Marks
CH1 - Number

Insert one pair of brackets in each of the following statements to make them correct.
(a) $6 + 3 \times 4 - 12 = 24$ [1]
(b) $6 + 3 \times 4 - 12 = -18$ [1]

05.
Theory 1 Marks
CH1 - Number

Work out $\frac{7}{10}$ of 250. .......................................................

06.
Theory 2 Marks
CH1 - Number

A recipe uses 200g of rice for 4 people.
Work out how much rice this recipe uses for 10 people.
................................. g [2]

07.
Theory 2 Marks
CH1 - Number

(a) Change 7.2 kilograms into grams. .......................................... g [1]
(b) Change 86000 $cm^3$ into $m^3$. .......................................... $m^3$ [1]

08.
Theory 3 Marks
CH2 - Algebra

The cost, $C$, of renting a car for $n$ days is $C = 20 + 12n$.
(a) Find the cost of renting a car for 5 days.
$ ....................................$ [1]
(b) The cost of renting a car was $104.
Find the number of days for which the car was rented.
...................................... [2]

09.
Theory 2 Marks
CH9 - Sets

Here are three sets $A$, $B$ and $C$.

$A = \{ 2, 5, 6, 7, 9, 16 \}$      $B = \{ 5, 6, 7, 9 \}$      $C = \{\text{even integers between 1 and 10}\}$

(a) Write down all the possible values for $x$ when $x \in A$ and $x \notin B$. .................................................... [1]

(b) List the elements of $A \cap C$. .................................................... [1]

10.
Theory 3 Marks
CH2 - Algebra

(a) Expand the brackets.
-3(x - 2)
..................................................... [1]
(b) Factorise completely.
6x - 10xy
..................................................... [2]

11.
Theory 2 Marks
CH4 - Coordinate geometry

A line is parallel to $y = 3x + 1$. It passes through the point $(0, 7)$.
Write down the equation of this line in the form $y = mx + c$.
$y = \text{..............................}$

12.
Theory 5 Marks
CH6 - Vectors and transformations

(a) Reflect triangle $A$ in the line $x = -1$. [2]
(b) Describe the \textbf{single} transformation that maps triangle $A$ onto triangle $B$.
................................................................................................................................................................................ [3]



13.
Theory 4 Marks
CH11 - Statistics

The list shows the number of ice creams sold each day by a shop for a 10 day period.
75 62 93 82 109 89 76 87 96 494
(a) Write down whether this type of data is discrete or continuous. Explain your answer.
..................... because .................................................................................
................................................................................................................. [2]
(b) Write down which of the mean or median is the most suitable average to use for this data. Explain your answer.
..................... because .................................................................................
................................................................................................................. [2]

14.
Theory 2 Marks
CH2 - Algebra

Simplify.
$$\frac{x}{2} + \frac{x}{3}$$

15.
Theory 3 Marks
CH2 - Algebra

Solve the simultaneous equations.
\(3x + 4y = 23\)
\(6x - 2y = 26\)
\(x = \text{........................................}\)
\(y = \text{........................................}\)

16.
Theory 4 Marks
CH11 - Statistics

The table shows the mathematics mark, $x$, and the English mark, $y$, for each of nine students in a test.

[Table_1]

(a) Complete the scatter diagram. The first four points have been plotted for you.



(b) Write down the type of correlation shown on the scatter diagram.

.......................................................... [1]

(c) The mean mathematics mark is 50 and the mean English mark is 60. Using this information, draw the line of best fit on your diagram. [1]