All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2016 Winter Zone 2
Theory
MCQ
01.
Theory 3 Marks
CH1 - Number

Here is a list of numbers. 2 3 4 5 6 From this list, write down (a) the factors of 18, .......................................... [1] (b) the square number, .......................................... [1] (c) a prime number. .......................................... [1]

02.
Theory 1 Marks
CH1 - Number

Write 0.03 as a fraction.

03.
Theory 1 Marks
CH1 - Number

A movie is 2 hours 40 minutes long. It starts at 1040.
At what time does it finish?

04.
Theory 2 Marks
CH1 - Number

Work out.
(a) 20 - 8 \times 2 .......................... [1]
(b) 2 \times 20 - 8 .......................... [1]

05.
Theory 2 Marks
CH1 - Number

The table shows the number of books borrowed each day from a library during one week.
[Table_1]

(a) On which day was the fewest number of books borrowed? ............................................. [1]

(b) Find the range of the number of books borrowed. ............................................. [1]

06.
Theory 2 Marks
CH1 - Number

(a) Write 0.08219 correct to 3 decimal places. .............................................. [1]
(b) Write 60952 correct to 3 significant figures. .............................................. [1]

07.
Theory 2 Marks
CH1 - Number

(a) Write 0.08219 correct to 3 decimal places.
................................. [1]
(b) Write 60952 correct to 3 significant figures.
................................. [1]

08.
Theory 2 Marks
CH2 - Algebra

Write down the next two numbers in this sequence.
19, 14, 9, 4, ............, .............

09.
Theory 2 Marks
CH5 - Geometry

The rectangle is enlarged by a scale factor of 4.
Write down the size of the enlarged rectangle.

Length ................................. cm
Width ................................. cm


10.
Theory 1 Marks
CH8 - Trigonometry

Measure the bearing of $A$ from $B$.

11.
Theory 1 Marks
CH4 - Coordinate geometry

Write down the equation of a line parallel to $y = 3x + 5$.

12.
Theory 2 Marks
CH7 - Mensuration

Find the area of a circle of diameter 12 cm.
Give your answer in terms of $\pi$.
......................... cm$^2$

13.
Theory 1 Marks
CH1 - Number

The area of a floor is $25 \text{ m}^2$. Jenny thinks this is the same as $2500 \text{ cm}^2$.

Is Jenny correct?
Explain your answer.

................ because ................................................................................................................
..................................................................................................................................................................................................................

14.
Theory 2 Marks
CH5 - Geometry

The exterior angle of a regular polygon is $40^\circ$.
Find the number of sides of this polygon.

15.
Theory 2 Marks
CH5 - Geometry


$AB$ is the diameter of the circle and $C$ is a point on the circumference.
Work out the size of angle $ABC$.
Angle $ABC = \text{.....................}$ [2]

16.
Theory 3 Marks
CH2 - Algebra

(a) Simplify.
(i) $3^0 \times 6$ ............................................ [1]
(ii) $\left( \frac{1}{3} \right)^3$ ............................................ [1]
(b) Find the value of $n$ when $2^{n+1} = 16$. ............................................ [1]

17.
Theory 4 Marks
CH11 - Statistics

Twenty students in a class each solve a puzzle.
The time taken, t minutes, by each student to solve the puzzle is shown in the table.
(a) Complete the table.

[Table_1]

Time (minutes)Number of studentsMidpoint
0 < t \leq 21
2 < t \leq 46
4 < t \leq 66
6 < t \leq 86
8 < t \leq 101
Total20
[1]
(b) Find an estimate for the mean time taken to solve the puzzle.
........................... min [3]

18.
Theory 3 Marks
CH1 - Number

(a) Complete the statement using one of the symbols $<$, $=$ or $>$.
7 ................ 4 [1]

(b) Write down the largest integer value, $x$, such that

(i) $x \leq -3$, .......................................................... [1]

(ii) $2x < 11$. .......................................................... [1]

19.
Theory 2 Marks
CH3 - Functions

Describe the \textit{single} transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 - 2$.

20.
Theory 3 Marks
CH11 - Statistics

The table shows the maximum daily temperature, $x$ °C, and the daily income, $$y$, of an ice cream salesman.

[Table_1]

(a) Complete the scatter diagram. The first four points have been plotted for you.



(b) Write down the type of correlation shown on the scatter diagram. ....................................................