Courses
Past Papers
Log In
Sign Up
Past Papers
Courses
Collegeboard AP
IB DP
Cambridge IGCSE
AS & A Level
IB MYP 1-3
IB MYP 4-5
/
Cambridge IGCSE
/
Mathematics - International - 0607 - Advanced
/
0607-21-Summer-2018
/
Q2
Q2:
Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2018 Summer Zone 1
1
0
Share
Share
Page Link
https://www.sparkl.me/past-papers/cambridge-igcse/mathematics-international-0607-advanced/cambridge-igcse-mathematics-international-0607-advanced-paper-2-2018-summer-zone-1/question/5443-142656
Copy
Share via
Whatsapp
Facebook
Previous
Next
Check your Answer
Questions:
2/15
Topic: CH5 - Geometry
View Solution
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
More Questions from this Topic
Theory
CH5 - Geometry
(a) Shade two more squares so that this shape has exactly one line of symmetry. [1](b) Shade two more triangles so that this shape has rotational sym...
2016
Summer
5
Theory
CH5 - Geometry
A, B, C \text{ and } D \text{ are points on the circle centre } O.Angle BOD = 130^{\circ}.(a) Find angle DCB.Angle DCB = \text{..........................
2016
Summer
2
Theory
CH5 - Geometry
From the list above, write down the letter which hasline symmetry only, ...........................................line symmetry and rotational symmet...
2016
Winter
2
Theory
CH5 - Geometry
The interior angle of a regular polygon is 176°. Work out how many sides the polygon has.
2016
Winter
1
Theory
CH5 - Geometry
A, B, C \text{ and } D \text{ lie on the circle, centre } O. Work out the value of \( y \). \( y = \text{...............................} \) \quad...
2016
Winter
1
Theory
CH5 - Geometry
In the diagram, $DC$ is parallel to $AB$ and $AC = AB$.Work out angle $ACB$.Angle $ACB = \text{..........................}$
2016
Summer
1
Theory
CH5 - Geometry
A, B and C lie on a circle, centre O. The line QBP is a tangent to the circle at B. AC = BC = BP and angle QBA = 42°. Find the value of (a) angle O...
2016
Winter
3
Theory
CH5 - Geometry
(a) A regular polygon has 12 sides. Work out the sum of the interior angles of the polygon. .............................................................
2016
Summer
3
Theory
CH5 - Geometry
OABC is a parallelogram.P is the midpoint of \(CB\).\(CQ : QA = 5 : 3\).\(\overrightarrow{OA} = \mathbf{a}\) and \(\overrightarrow{OC} = \mathbf{c}\)....
2016
Winter
1
Theory
CH5 - Geometry
The diagram shows a pentagon.Find the value of $x$.$x = \text{........................................}$ [3]
2016
Winter
2
More Questions from year 2018
Theory
CH1 - Number
(a) Work out $5 - 7 \times 2 + 8$.............................................. [1](b) Find $\sqrt[3]{0.001}$............................................
2018
Summer
2
Theory
CH5 - Geometry
(a) Find, by measuring, the size of this reflex angle. .........................................................[1](b) Work out the value of $x$. NOT...
2018
Summer
1
Theory
CH2 - Algebra
Solve these simultaneous equations. $x - 3y = 7$ $x - 2y = 5$ $x = \text{.................................}$ $y = \text{.................................
2018
Summer
2
Theory
CH1 - Number
(a) Write 0.68 as a fraction in its lowest terms......................................................... [1](b) Work out $\frac{3}{7} \cdot \frac{8}{...
2018
Summer
2
Theory
CH2 - Algebra
These are the first five terms of a sequence.1 \quad 0 \quad 1 \quad 4 \quad 9Find the $n^{th}$ term of this sequence.
2018
Summer
2
Theory
CH2 - Algebra
(a) Expand and simplify.$(2p - 7q)(p + q)$ ..................................................[2](b) Factorise.$2 - t - 2a + at$ .........................
2018
Summer
2
Theory
CH5 - Geometry
O is the centre of the circle.Find the value of $x$ and the value of $y$.$x = \text{.............................}$$y = \text{...........................
2018
Summer
3
Theory
CH2 - Algebra
y varies inversely as x^2. When x = 3, y = 4.Find y in terms of x.y = \text{.......................................} [2]
2018
Summer
2
Theory
CH2 - Algebra
(a) Find the value of $27^{\frac{2}{3}}$. [1](b) Simplify $18h^{18} \div 3h^{3}$. [2]
2018
Summer
2
Theory
CH2 - Algebra
Given the equation $v^2 = u^2 - 2as$, find $s$ in terms of $a$, $u$, and $v$.$s = \text{.....................................................} \,[2]$
2018
Summer
2