No questions found
(a) Work out $5 - 7 \times 2 + 8$.
............................................. [1]
(b) Find $\sqrt[3]{0.001}$.
............................................. [1]
(a) Find, by measuring, the size of this reflex angle. .........................................................[1]
(b) Work out the value of $x$.
NOT TO SCALE
$x = ext{............................................................}[1]$
(c) Find the size of one exterior angle of a regular 18-sided polygon. .........................................................[2]
Solve these simultaneous equations.
$x - 3y = 7$
$x - 2y = 5$
$x = \text{.................................}$
$y = \text{.................................}$ [2]
(a) Write 0.68 as a fraction in its lowest terms.
........................................................ [1]
(b) Work out $\frac{3}{7} \cdot \frac{8}{9}$.
........................................................ [2]
These are the first five terms of a sequence.
1 \quad 0 \quad 1 \quad 4 \quad 9
Find the $n^{th}$ term of this sequence.
(a) Expand and simplify.
$(2p - 7q)(p + q)$ ..................................................[2]
(b) Factorise.
$2 - t - 2a + at$ ....................................................................[2]
O is the centre of the circle.
Find the value of $x$ and the value of $y$.
$x = \text{.............................}$
$y = \text{.......................................[2]}$
y varies inversely as x^2. When x = 3, y = 4.
Find y in terms of x.
y = \text{.......................................} [2]
(a) Find the value of $27^{\frac{2}{3}}$. [1]
(b) Simplify $18h^{18} \div 3h^{3}$. [2]
Given the equation $v^2 = u^2 - 2as$, find $s$ in terms of $a$, $u$, and $v$.
$s = \text{.....................................................} \,[2]$
In each Venn diagram, shade the region indicated.
[Image_1: (A \cup B)^']
[Image_2: (P \cup Q) \cap R]
(a) Simplify fully.
$\sqrt{700}$ ...............................................................[1]
(b) Rationalise the denominator.
$\frac{1}{7-\sqrt{2}}$ ...........................................................[2]
Simplify fully. $$\frac{3t - t^2}{9 - t^2}$$
(a) Write down the value of $\log_{9}3$.
.................................................. [1]
(b) $2 \log 2 + \log 11 = \log x$.
Find the value of $x$.
$x = \text{..................................................}$ [2]
The length of the arc $AB = \frac{4\pi}{3}$ cm.
The area of the sector $OAB$ is $k\pi \text{ cm}^2$.
Find the value of $k$.
k = ..................... [3]