Past Papers
Practice Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2018 Winter Zone 1
Like Icon 0
Share
Questions: 11/11
Topic: CH8 - Trigonometry
Solution
PRACTISE
Similar Questions
LEARN
Concepts with Sparky
Close Icon
Close Icon
Close Icon
Access AI-Features in
IB Past Papers App
Access
AI-Features in
IB Past Papers App
QR Code

Get exclusive access to our AI features such as instant feedback, similar questions and AI tutor sessions.

;

Related Questions from Similar Topic

Theory
CH8 - Trigonometry
(a) Find $AC$. (b) Calculate angle $CAD$.(c) Calculate the area of the quadrilateral $ABCD$.
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows a fence panel $ABCDE$.The vertical edges $AE$ and $BC$ are of length 120 cm and the horizontal base $EC$ is of length 180 cm.$D$ is ...
2015 Summer
Theory
CH8 - Trigonometry
(a) On the diagram, sketch the graph of $y = f(x)$ for values of $x$ between $-90$ and $360$. [3](b) Solve the equation $f(x) = 5$ for values of $x$ b...
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows the plan of a field $ABCD$ with a path from $A$ to $C$. (a) Calculate(i) the obtuse angle $ABC$, Answer(a)(i) .........................
2015 Summer
Theory
CH8 - Trigonometry
The diagram shows a field $ABCD$ with a path from $A$ to $C$. $AC = 150\text{m}$, $AD = 120\text{m}$ and $CD = 235\text{m}$. Angle $ABC = 90^{\circ}...
2015 Summer
Theory
CH8 - Trigonometry
The graph of $y = a \cos(bx)^\circ$ has a maximum point at (360, 3) and a minimum point at (450, -3).Find the value of $a$ and the value of $b$.Answer...
2015 Winter
Theory
CH8 - Trigonometry
Calculate (a) $BC$, Answer(a) ............................................................. cm [2] (b) angle $CAD$, Answer(b) .......................
2015 Winter
Theory
CH8 - Trigonometry
In the diagram, $ABC$ is a straight line and $BFED$ is a rectangle. (a) Find $BC$.Answer(a) .............................................................
2015 Winter
Theory
CH8 - Trigonometry
The graph of $y = a \sin (x + b)^\circ$ is shown in the diagram.Find the value of $a$ and the value of $b$.$a = \text{...................................
2016 Summer
Theory
CH8 - Trigonometry
The diagram shows the graph of $y = a \sin(bx)^{\circ}$, for $0 \leq x \leq 90$.Find the value of $a$ and the value of $b$.$a = \text{...................
2016 Winter

More Questions from year 2018

Theory
CH1 - Number
(a) Work out $5 - 7 \times 2 + 8$.............................................. [1](b) Find $\sqrt[3]{0.001}$............................................
2018 Summer
Theory
CH5 - Geometry
(a) Find, by measuring, the size of this reflex angle. .........................................................[1](b) Work out the value of $x$. NOT...
2018 Summer
Theory
CH2 - Algebra
Solve these simultaneous equations. $x - 3y = 7$ $x - 2y = 5$ $x = \text{.................................}$ $y = \text{.................................
2018 Summer
Theory
CH1 - Number
(a) Write 0.68 as a fraction in its lowest terms......................................................... [1](b) Work out $\frac{3}{7} \cdot \frac{8}{...
2018 Summer
Theory
CH2 - Algebra
These are the first five terms of a sequence.1 \quad 0 \quad 1 \quad 4 \quad 9Find the $n^{th}$ term of this sequence.
2018 Summer
Theory
CH2 - Algebra
(a) Expand and simplify.$(2p - 7q)(p + q)$ ..................................................[2](b) Factorise.$2 - t - 2a + at$ .........................
2018 Summer
Theory
CH5 - Geometry
O is the centre of the circle.Find the value of $x$ and the value of $y$.$x = \text{.............................}$$y = \text{...........................
2018 Summer
Theory
CH2 - Algebra
y varies inversely as x^2. When x = 3, y = 4.Find y in terms of x.y = \text{.......................................} [2]
2018 Summer
Theory
CH2 - Algebra
(a) Find the value of $27^{\frac{2}{3}}$. [1](b) Simplify $18h^{18} \div 3h^{3}$. [2]
2018 Summer
Theory
CH2 - Algebra
Given the equation $v^2 = u^2 - 2as$, find $s$ in terms of $a$, $u$, and $v$.$s = \text{.....................................................} \,[2]$
2018 Summer