All Questions: AS & A Level Physics - 9702 Paper 3 2019 Summer Zone 3
Theory
MCQ
01.
Theory 19 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

(a) Set up the apparatus as shown in Fig. 1.1.
• Attach the beaker to the block of wood using modelling clay.
• The distance between the centre of each 150g mass and the nearest end of the rule is $x$.

Adjust the apparatus so that the value of $x$ is approximately 20 cm and the rule is balanced on the beaker, as shown in Fig. 1.1.

!

• Record $x$.

$x = \text{..................................................}$ [1]

(b) • Pull one end of the rule down through a short distance.
• Release the end of the rule so that it oscillates.
• Determine the period $T$ of these oscillations.

$T = \text{..................................................}$ [2]

(c) Reduce $x$ by changing the positions of the 150 g masses on the rule. Measure and record $x$ and $T$. Repeat until you have five sets of values.

Record your results in a table.

[7]

(d) (i) Plot a graph of $T$ on the $y$-axis against $x$ on the $x$-axis.
[3]
(ii) Draw the straight line of best fit.
[1]
(iii) Determine the gradient and $y$-intercept of this line.

gradient = ................................................
$y$-intercept = ................................................
[2]

(e) It is suggested that the quantities $T$ and $x$ are related by the equation $$T = Px + Q$$ where $P$ and $Q$ are constants.

Using your answers in (d)(iii), determine the values of $P$ and $Q$.
Give appropriate units.

$P = \text{..................................................}$
$Q = \text{..................................................}$
[2]

(f) For one particular value of $x$, the value of $T$ is the same as when there are no masses on the rule.

• Remove the masses from the rule.
• Balance the rule on the beaker and repeat (b).

$T = \text{..................................................}$

• Use your value of $T$ and answers in (e) to calculate this value of $x$.
Give your answer to three significant figures.

$x = \text{..................................................}$ [2]

02.
Theory 28 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

In this experiment, you will investigate the path of a bouncing ball.

(a) (i) • Set up the apparatus as shown in Fig. 2.1.



• Support the board using the clamp.

• The dot on the board should be facing upwards and be close to the top end of the board.

The angle $\theta$ between the board and the bench should be approximately $25^\circ$.
Measure and record $\theta$.

$\theta = \text{..................................................}^\circ$ [1]

(ii) Calculate $(\sin 2\theta)(\cos 2\theta)$.

$(\sin 2\theta)(\cos 2\theta) = \text{..................................................}$ [1]

(iii) Justify the number of significant figures that you have given for your value of $(\sin 2\theta)(\cos 2\theta)$.
.................................................................................................................
.................................................................................................................
................................................................................................................. [1]

(b) • Use the G-clamp to support the card vertically, as shown in Fig. 2.2.



• Position the card at the lower edge of the board, as shown in Fig. 2.3.



• Draw a horizontal line on the paper at the same height above the bench as the dot. Label this line A.
• The horizontal distance between the line A and the dot is $d$.
Measure and record $d$.

$d = \text{..........................................................}$ [2]

(c) (i) • Hold the ball vertically above the dot on the board, as shown in Fig. 2.4.
• Release the ball so that it bounces from the board and strikes the card.
• Continue releasing the ball from different heights until the ball strikes the line A.
• The height of the ball above the dot is $h$.



Measure and record $h$.
$h = \text{..........................................................}$ [1]

(ii) Estimate the percentage uncertainty in your value of $h$.
percentage uncertainty = \text{..........................................................}$ [1]

(d) • Adjust the apparatus so that $\theta$ is approximately $15^\circ$.
Measure and record $\theta$ and repeat (a)(ii).

$\theta = \text{..................................................}^\circ$

$(\sin 2\theta)(\cos 2\theta) = \text{..................................................}$

• Repeat (b), labelling your second line B.

$d = \text{..........................................................}$

• Repeat (c)(i) using line B.

$h = \text{..........................................................}$ [3]

(e) It is suggested that the relationship between $h$, $d$ and $\theta$ is

$h = \frac{kd}{(\sin 2\theta)(\cos 2\theta)}$

where $k$ is a constant.

(i) Using your data, calculate two values of $k$.
first value of $k = \text{..........................................................}$
second value of $k = \text{..........................................................}$ [1]

(ii) Explain whether your results support the suggested relationship.
.................................................................................................................
.................................................................................................................
................................................................................................................. [1]

(f) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ...............................................................................................................
.................................................................................................................
2. ...............................................................................................................
.................................................................................................................
3. ...............................................................................................................
.................................................................................................................
4. ...............................................................................................................
................................................................................................................. [4]

(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ...............................................................................................................
.................................................................................................................
2. ...............................................................................................................
.................................................................................................................
3. ...............................................................................................................
.................................................................................................................
4. ...............................................................................................................
................................................................................................................. [4]