No questions found
(a) Set up the apparatus as shown in Fig. 1.1.
• Attach the beaker to the block of wood using modelling clay.
• The distance between the centre of each 150g mass and the nearest end of the rule is $x$.
Adjust the apparatus so that the value of $x$ is approximately 20 cm and the rule is balanced on the beaker, as shown in Fig. 1.1.
!
• Record $x$.
$x = \text{..................................................}$ [1]
(b) • Pull one end of the rule down through a short distance.
• Release the end of the rule so that it oscillates.
• Determine the period $T$ of these oscillations.
$T = \text{..................................................}$ [2]
(c) Reduce $x$ by changing the positions of the 150 g masses on the rule. Measure and record $x$ and $T$. Repeat until you have five sets of values.
Record your results in a table.
[7]
(d) (i) Plot a graph of $T$ on the $y$-axis against $x$ on the $x$-axis.
[3]
(ii) Draw the straight line of best fit.
[1]
(iii) Determine the gradient and $y$-intercept of this line.
gradient = ................................................
$y$-intercept = ................................................
[2]
(e) It is suggested that the quantities $T$ and $x$ are related by the equation $$T = Px + Q$$ where $P$ and $Q$ are constants.
Using your answers in (d)(iii), determine the values of $P$ and $Q$.
Give appropriate units.
$P = \text{..................................................}$
$Q = \text{..................................................}$
[2]
(f) For one particular value of $x$, the value of $T$ is the same as when there are no masses on the rule.
• Remove the masses from the rule.
• Balance the rule on the beaker and repeat (b).
$T = \text{..................................................}$
• Use your value of $T$ and answers in (e) to calculate this value of $x$.
Give your answer to three significant figures.
$x = \text{..................................................}$ [2]
In this experiment, you will investigate the path of a bouncing ball.
(a) (i) • Set up the apparatus as shown in Fig. 2.1.
• Support the board using the clamp.
• The dot on the board should be facing upwards and be close to the top end of the board.
The angle $\theta$ between the board and the bench should be approximately $25^\circ$.
Measure and record $\theta$.
$\theta = \text{..................................................}^\circ$ [1]
(ii) Calculate $(\sin 2\theta)(\cos 2\theta)$.
$(\sin 2\theta)(\cos 2\theta) = \text{..................................................}$ [1]
(iii) Justify the number of significant figures that you have given for your value of $(\sin 2\theta)(\cos 2\theta)$.
.................................................................................................................
.................................................................................................................
................................................................................................................. [1]
(b) • Use the G-clamp to support the card vertically, as shown in Fig. 2.2.
• Position the card at the lower edge of the board, as shown in Fig. 2.3.
• Draw a horizontal line on the paper at the same height above the bench as the dot. Label this line A.
• The horizontal distance between the line A and the dot is $d$.
Measure and record $d$.
$d = \text{..........................................................}$ [2]
(c) (i) • Hold the ball vertically above the dot on the board, as shown in Fig. 2.4.
• Release the ball so that it bounces from the board and strikes the card.
• Continue releasing the ball from different heights until the ball strikes the line A.
• The height of the ball above the dot is $h$.
Measure and record $h$.
$h = \text{..........................................................}$ [1]
(ii) Estimate the percentage uncertainty in your value of $h$.
percentage uncertainty = \text{..........................................................}$ [1]
(d) • Adjust the apparatus so that $\theta$ is approximately $15^\circ$.
Measure and record $\theta$ and repeat (a)(ii).
$\theta = \text{..................................................}^\circ$
$(\sin 2\theta)(\cos 2\theta) = \text{..................................................}$
• Repeat (b), labelling your second line B.
$d = \text{..........................................................}$
• Repeat (c)(i) using line B.
$h = \text{..........................................................}$ [3]
(e) It is suggested that the relationship between $h$, $d$ and $\theta$ is
$h = \frac{kd}{(\sin 2\theta)(\cos 2\theta)}$
where $k$ is a constant.
(i) Using your data, calculate two values of $k$.
first value of $k = \text{..........................................................}$
second value of $k = \text{..........................................................}$ [1]
(ii) Explain whether your results support the suggested relationship.
.................................................................................................................
.................................................................................................................
................................................................................................................. [1]
(f) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ...............................................................................................................
.................................................................................................................
2. ...............................................................................................................
.................................................................................................................
3. ...............................................................................................................
.................................................................................................................
4. ...............................................................................................................
................................................................................................................. [4]
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ...............................................................................................................
.................................................................................................................
2. ...............................................................................................................
.................................................................................................................
3. ...............................................................................................................
.................................................................................................................
4. ...............................................................................................................
................................................................................................................. [4]