All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 3 2018 Winter Zone 3
Theory
MCQ
01.
Theory 11 Marks
CH1 - Number

(a) Here is a list of numbers.

8 \ 10 \ 14 \ 17 \ 20 \ 25

From this list, write down
(i) an odd number, ................................................[1]
(ii) a multiple of 7, ................................................[1]
(iii) a square number. .............................................[1]

(b) Here are the first four numbers in a sequence.

8 \ 11 \ 14 \ 17

Write down the next two terms in this sequence.
............................. , ..........................[2]

(c) Write 3658 correct to the nearest 100.
................................................[1]

(d) Write 68.437
(i) correct to 2 decimal places, ................................................[1]
(ii) correct to 3 significant figures. ................................................[1]

(e) $s = 2m + 3n$
Find the value of $s$ when $m = 4.8$ and $n = 1.6$.

$s = .................................................[2]$

(f) Change 2.3 kilometres into metres.
........................................... m [1]

02.
Theory 6 Marks
CH1 - Number

A school shop sells the following.
[Table_1]
(a) Gigue buys 3 pencils and 1 sharpener.
Work out how much he spends.
.............................................. cents [2]
(b) The cost of a ruler is increased by 20\%.
Work out the new cost of a ruler.
.............................................. cents [2]
(c) In a sale, the cost of a sharpener is reduced to 19 cents.
Work out the percentage reduction.
.............................................. \% [2]

03.
Theory 4 Marks
CH11 - Statistics

Some students were asked to choose their favourite colour of candy. All their choices are shown in the table.

[Table_1]

(a) Find the number of students that were asked.
........................................................... [1]

(b) One of these students is chosen at random.
Find the probability that their favourite colour of candy is blue.
........................................................... [1]

(c) Complete the bar chart.

[2]

04.
Theory 4 Marks
CH11 - Statistics

There are 36 cars altogether in a car park.
There are 11 black cars, 10 red cars and the rest of the cars are blue.

(a) Work out the number of blue cars. .............................................................. [1]

(b) Write down the fraction of cars in the car park that are black. .............................................................. [1]

(c) The information is to be shown in a pie chart.

Work out the sector angle for red cars. .............................................................. [2]

05.
Theory 10 Marks
CH5 - Geometry

(a) From the letters above, write down all the letters that have
(i) line symmetry, .......................................................... [2]
(ii) rotational symmetry, .......................................................... [2]
(iii) both line symmetry and rotational symmetry, .......................................................... [1]
(iv) neither line symmetry nor rotational symmetry. .......................................................... [1]
(b) On a poster, the letter I is a rectangle of width 2 cm and height 11 cm.
(i) Work out the perimeter of the letter I. .......................................................... cm [1]
(ii) Work out the area of the letter I. .......................................................... cm² [1]

06.
Theory 5 Marks
CH10 - Probability

A bag contains 15 marshmallows. 8 of these are white and 7 are pink.
Terry picks a marshmallow at random from the bag and eats it.
He then picks a second marshmallow at random from the bag and eats it.
(a) Complete the probability tree diagram.

(b) Find the probability that both marshmallows were white.

07.
Theory 8 Marks
CH6 - Vectors and transformations

(a) Describe fully the single transformation that maps triangle A onto triangle B.
.........................................................................................................................................................
....................................................................................................................................................... [2]

(b) Describe fully the single transformation that maps triangle A onto triangle C.
.........................................................................................................................................................
....................................................................................................................................................... [2]

(c) On the grid, draw the image of triangle A after a rotation of 180° about the origin. Label this image D. [2]

(d) Describe fully the single transformation that maps triangle C onto triangle D.
.........................................................................................................................................................
....................................................................................................................................................... [2]

08.
Theory 11 Marks
CH1 - Number

The diagram shows a rectangle joined to a semicircle. There is a path along the perimeter of this shape.


(a) Show that the length of the path is 757 m, correct to the nearest metre.

............................................................... [3]

(b) Maggie runs around the path at a speed of 220 metres per minute. Work out how long it takes Maggie to run around the path. Give your answer in minutes.

............................................................... min [1]

(c) Jack takes 10 minutes to walk around the path. Work out his average speed in km/h.

............................................................... km/h [3]

(d) Work out the total area enclosed by the path.

............................................................... m² [3]

(e) The area inside the path is covered with grass. Grass cost $0.29 for one square metre. Work out the total cost for the grass.

$............................................................... [1]

09.
Theory 8 Marks
CH4 - Coordinate geometry

The diagram shows a 1cm$^2$ grid.

(a) On the grid, plot the points $R(2, 2)$, $S(8, 2)$ and $T(8, 8)$. Join these points to form a right-angled triangle. [2]
(b) Find
(i) the length of $RS$, ........................................... cm [1]
(ii) the area of the triangle, ...................................... cm$^2$ [1]
(iii) the gradient of $RT$. ............................................. [2]
(c) Find the co-ordinates of the midpoint of $RT$. ( ..................... , ..................... ) [1]
(d) Write down the equation of the line $ST$. ........................................................ [1]

10.
Theory 8 Marks
CH5 - Geometry

(a)
The diagram shows a circle, centre $O$. $AB$ and $CD$ are parallel chords and the line $EDF$ is a tangent to the circle at $D$.
Angle $ODC = 10^{\circ}$ and angle $OCB = 15^{\circ}$.
Find the size of
(i) angle $ODE$,

Angle $ODE = \text{.....................................................}$ [1]
(ii) angle $CDF$,

Angle $CDF = \text{.....................................................}$ [1]
(iii) angle $COD$,

Angle $COD = \text{.....................................................}$ [2]
(iv) angle $CBA$.

Angle $CBA = \text{.....................................................}$ [1]

(b)
The diagram shows a pentagon.
Find the value of $x$.

$x = \text{.....................................................}$ [3]

11.
Theory 5 Marks
CH9 - Sets

The Venn diagram shows the number of students in a class wearing a T-shirt, $T$, or a cardigan, $C$.



(a) There are 20 students in total in the class.
Complete the Venn diagram. [1]

(b) Find the probability that one of these students, chosen at random, wears
(i) both a T-shirt and a cardigan, ................................................... [1]
(ii) a T-shirt but not a cardigan. .................................................... [1]

(c) Find $n(T)$. .................................................... [1]

(d) On the Venn diagram, shade $C \cap T'$. [1]

12.
Theory 14 Marks
CH2 - Algebra

(a) $T = 5R - S$
Find the value of $T$ when $R = 3$ and $S = 4$.
$T = \text{.................................}$ [2]

(b) Simplify fully.
(i) $3a - 6b + 2a - b$
............................................... [2]
(ii) $\frac{10x}{5x}$
............................................... [1]

(c) Solve.
(i) $\frac{x}{2} = 5$
$x = \text{.................................}$ [1]
(ii) $7x + 2 = 51$
$x = \text{.................................}$ [2]

(d) Expand the brackets and simplify.
$4(x + 2) + 2(2x + 1)$
............................................... [2]

(e) Write down the inequality shown by this number line.
!(attachment)
............................................... [1]

(f) Solve these simultaneous equations.
You must show all your working.
$2x - y = 9$
$3x + y = 16$
$x = \text{.................................}$
$y = \text{.................................}$ [2]

13.
Theory 5 Marks
CH3 - Functions

The diagram shows the graph of $y = f(x)$ where $f(x) = -2x^2 + 5x + 6$ for $-2 \leq x \leq 4$.
(a) Use your calculator to find the zeros of $f(x)$.
...................... and ...................... [2]
(b) Use your calculator to find the co-ordinates of the local maximum.
( ...................... , ...................... ) [2]
(c) Write down the equation of the line of symmetry.
.............................................. [1]