All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2018 Winter Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write the number ten thousand and eleven in figures.

02.
Theory 1 Marks
CH1 - Number

Find 10\% of 200.

03.
Theory 2 Marks
CH1 - Number

From the list of numbers write down
(a) a cube number, ................................................ [1]
(b) a triangle number. .......................................... [1]
Numbers: 6, 8, 10, 12, 14, 16

04.
Theory 1 Marks
CH1 - Number

Work out.
\(-5 \times -4 - 2\)

05.
Theory 1 Marks
CH5 - Geometry

Write down the mathematical name for the angle shown.

06.
Theory 1 Marks
CH5 - Geometry

O is the centre of the circle.
On the diagram, draw a diameter.

07.
Theory 1 Marks
CH5 - Geometry

AB is a straight line. Find the value of x.
x = ext{.....................} [1]

08.
Theory 1 Marks
CH1 - Number

Change 3 kg into grams. \text{........................... g} [1]

09.
Theory 1 Marks
CH5 - Geometry

Complete the statement.

The diagram has rotational symmetry of order \text{.....................}

10.
Theory 2 Marks
CH1 - Number

Divide 42 in the ratio 2 : 5.
..................... and ...................[2]

11.
Theory 1 Marks
CH6 - Vectors and transformations

On the grid, draw the image of shape A after a reflection in the y-axis.

12.
Theory 1 Marks
CH10 - Probability

Xander spins this unbiased spinner and records the letters it lands on.
Write down the letter he is most likely to record.


13.
Theory 2 Marks
CH1 - Number

In a sale, the price of a washing machine is reduced by 25%.
The original price is $400.

Work out the sale price.
$ \text{...............................} \; [2]

14.
Theory 2 Marks
CH1 - Number

Write down the lowest common multiple (LCM) of 10 and 12.
$\text{....................................}$

15.
Theory 1 Marks
CH3 - Functions

Complete the mapping diagram.

\[\begin{pmatrix} 6 \\ 15 \\ 27 \\ 42 \\ 60 \end{pmatrix} \rightarrow \begin{pmatrix} 2 \\ 5 \\ 9 \\ 14 \\ .......... \end{pmatrix}\]

16.
Theory 2 Marks
CH7 - Mensuration

The volume of a cone can be estimated using the following formula.

Volume = height \times (\text{base radius})^2

Use this formula to find the volume of a cone with base radius 6 cm and height 5 cm.
............................. \text{cm}^3 [2]

17.
Theory 2 Marks
CH1 - Number

Asha takes 20 minutes to walk to school.
She walks at 4.5 km/h.

Work out how far Asha walks.
............................................................. km [2]

18.
Theory 2 Marks
CH5 - Geometry

The exterior angle of a regular polygon is $20^{\circ}$.
Find the number of sides of this polygon.

19.
Theory 4 Marks
CH11 - Statistics

The time taken, in minutes, by each of 12 students to walk to school is shown below.

22 10 23 11 20 24
21 15 29 24 6 11

(a) Work out the range.
................................................ min [1]

(b) Find the median.
................................................ min [2]

(c) Find the lower quartile.
................................................ min [1]

20.
Theory 2 Marks
CH9 - Sets

40 students were asked if they liked tea or coffee.
10 liked tea only.
16 liked coffee only.
8 did not like tea or coffee.

Use this information to complete the Venn diagram.



21.
Theory 2 Marks
CH6 - Vectors and transformations

A is the point (6, 4) and B is the point (3, 9).
Write down \( \overrightarrow{AB} \).
\( \overrightarrow{AB} = \begin{pmatrix} \phantom{00} \end{pmatrix} \) [2]

22.
Theory 2 Marks
CH1 - Number

Write down all the integer values of $x$ that satisfy $-2 < x \leq 2$.

23.
Theory 2 Marks
CH2 - Algebra

Factorise completely.
\[ 4x^2 + 6x \]
..................................................

24.
Theory 3 Marks
CH2 - Algebra

Solve the simultaneous equations.

$\begin{align*} 5x + y &= 8 \\ 3x + 2y &= 9 \end{align*}$

$x =$ ...............................
$y =$ ............................... [3]