All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2019 Winter Zone 3
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write down the square root of 36.

02.
Theory 2 Marks
CH1 - Number

From the list of numbers write down
(a) the triangle number, .......................... [1]
(b) the even number. .......................... [1]
9 11 15 22 27 33

03.
Theory 1 Marks
CH1 - Number

Work out $\frac{4}{7}$ of 42.

04.
Theory 1 Marks
CH1 - Number

Insert one pair of brackets to make this statement correct.
$$3 - 2 \times 5 + 1 = 6$$

05.
Theory 1 Marks
CH5 - Geometry

Measure angle $x$.

06.
Theory 2 Marks
CH5 - Geometry

Complete the statements.

Diagram [Image_A] shows perpendicular lines.
Diagram [Image_D] shows a reflex angle.

07.
Theory 1 Marks
CH7 - Mensuration

Find the perimeter of this rectangle.

08.
Theory 3 Marks
CH5 - Geometry

(a) Complete the diagram above so that the dotted line is a line of symmetry. [1]
(b) (i) On the grid, plot and label the point $C(3, 1)$. Join the points to form triangle $ABC$. [1]
(ii) A shape is made from two congruent triangles $ABC$ and $ABD$. The shape has rotational symmetry of order 2 and no lines of symmetry. On the grid draw triangle $ABD$. [1]

09.
Theory 3 Marks
CH1 - Number

Look at this train timetable.

\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline & \text{08 35} & \text{09 00} & \text{09 05} & \text{09 35} & \text{10 05} & \text{10 35} & \text{11 00} & \text{11 35} \\ \hline \text{Bunley} & & \text{08 51} & \text{09 51} & \text{10 51} & \text{11 51} \\ \hline \text{Alton} & & & & & & \text{09 19} & \text{09 44} & \text{09 30} & \text{10 19} & \text{11 19} & \text{11 44} & \text{12 19} \\ \hline \text{Sidcot} & & & \text{09 59} & \text{10 59} & \text{11 59} \\ \hline \text{Bilham} & & & \text{10 22} & \text{10 56} & \text{11 30} & \text{12 22} & \text{12 36} & \text{13 22} \\ \hline \text{Tim Spa} & & & \text{10 35} & \text{11 11} & \text{12 35} & \text{12 49} & \text{13 35} \\ \hline \text{Trickway} & & & \text{11 25} \\ \hline \text{Wester} & & & & & \text{12 14} & \text{13 30} & \text{14 04} \\ \hline \end{array} \]

(a) A train goes from Bunley to Tim Spa without stopping.

Write down the time this train leaves Bunley.
..................................................... [1]
(b) Find which train takes the longest time to travel from Bunley to Wester.
..................................................... [2]

10.
Theory 2 Marks
CH5 - Geometry

The diagram shows a triangle $ABC$ and a straight line $BD$.
Find the size of angle $x$.



$x = \text{.....................}$

11.
Theory 1 Marks
CH1 - Number

Change 45g into kilograms. \[ \text{........................ kg} \] [1]

12.
Theory 1 Marks
CH2 - Algebra

Simplify.

$4m + m - 3m$

13.
Theory 2 Marks
CH1 - Number

A = \{ x \mid x \text{ is a factor of 30 and } x \leq 10 \}
List the elements of set A.
\{ \text{............................} \} [2]

14.
Theory 3 Marks
CH11 - Statistics

These are the marks of 11 students in a mathematics test.
23 43 17 8 21 23 41 6 15 11 34
Draw an ordered stem and leaf diagram for these marks.

Key ....... | ....... represents ............... [3]

15.
Theory 1 Marks
CH1 - Number

A cyclist travels 120 km in 6 hours.
Calculate his average speed.
............................... km/h [1]

16.
Theory 1 Marks
CH1 - Number

Given $4^3 = 64$, find the value of $4^4$.

17.
Theory 1 Marks
CH2 - Algebra

Factorise $2x^2 + 5x$.

18.
Theory 1 Marks
CH8 - Trigonometry

Put a ring around the correct expression for the distance x.

30 \tan 37^\circ
30 \sin 53^\circ
30 \cos 53^\circ
30 \cos 37^\circ

19.
Theory 3 Marks
CH7 - Mensuration

The diagram shows a pyramid with vertical height 30 cm. The horizontal base of the pyramid is a square with side 7 cm.
Work out the volume of the pyramid.

.................................... cm^3

20.
Theory 2 Marks
CH8 - Trigonometry

The bearing of Town X from Town Y is 045°. Find the bearing of Town Y from Town X.

21.
Theory 1 Marks
CH3 - Functions

f(x) = (x + 2)(x - 1)
Work out f(5).

22.
Theory 4 Marks
CH6 - Vectors and transformations

(a) On the grid, draw the image of shape $A$ after an enlargement by scale factor $2$ about centre $C$. [2]
(b) Shape $S$ is the image of a shape after a translation by the vector \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \).
On the grid, draw the original shape. [2]


23.
Theory 2 Marks
CH11 - Statistics

The cumulative frequency table shows the marks, $x$, of 100 students in a science test.

[Table_1]

On the grid, draw a cumulative frequency curve to show this information.