All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2020 Summer Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write 73% as a fraction.

02.
Theory 1 Marks
CH1 - Number

Write down all the factors of 11. \text{..........................} [1]

03.
Theory 1 Marks
CH5 - Geometry



$AB$ is a straight line.
Find the value of $x$.
$x = \text{.............................}$ [1]

04.
Theory 2 Marks
CH5 - Geometry

(a)
Write down the mathematical name of this polygon. ...................................................... [1]
(b)
Write down the mathematical name of this polygon. ...................................................... [1]

05.
Theory 1 Marks
CH5 - Geometry

![Image of circle](https://---) O is the centre of the circle.
Write down the mathematical name of the line AB.

06.
Theory 2 Marks
CH11 - Statistics

The diagram shows the favourite subject of each student in a class.



Write down the number of students whose favourite subject is
(a) French, ................................................ [1]
(b) mathematics. ................................................ [1]

07.
Theory 1 Marks
CH1 - Number

Work out.
$30 - 5 \times 7 + 1$

08.
Theory 2 Marks
CH7 - Mensuration

This shape is made from an equilateral triangle and a square.
Find the perimeter of this shape.


09.
Theory 1 Marks
CH7 - Mensuration

On the 1 cm$^2$ grid, draw a triangle with an area of 6 cm$^2$.


10.
Theory 2 Marks
CH5 - Geometry

Draw all the lines of symmetry on this regular pentagon.

11.
Theory 1 Marks
CH5 - Geometry

Find, by measuring, the angle marked $x$.

12.
Theory 1 Marks
CH1 - Number

Change 4m 25cm into millimetres. ................................ mm [1]

13.
Theory 1 Marks
CH1 - Number

Simplify the ratio 10:15.

14.
Theory 1 Marks
CH1 - Number

Work out $2^5$.

15.
Theory 2 Marks
CH2 - Algebra

Solve the equation.
$4x + 1 = 6$
$x = \text{.................................}$ [2]

16.
Theory 2 Marks
CH4 - Coordinate geometry

Find the coordinates of the mid-point of the line joining the point (0, 0) to the point (-2, 4).
(\text{..................} , \text{..................})

17.
Theory 1 Marks
CH1 - Number

Write down the integers that satisfy the inequality $3 < n < 7$.

18.
Theory 1 Marks
CH3 - Functions

The diagram shows the graph of $y = f(x)$.

Draw the horizontal asymptote for the graph of $y = f(x)$. [1]

19.
Theory 3 Marks
CH10 - Probability

Apples are stored in boxes. There are 100 apples in a box. Two boxes are chosen at random and the apples are sorted into good and bad.

(a) Complete the table of results.

\( \begin{array}{|c|c|c|c|} \hline & \text{Good} & \text{Bad} & \text{Total} \\ \hline \text{Box 1} & & 12 & 100 \\ \hline \text{Box 2} & 95 & & 100 \\ \hline \text{Total} & 183 & & 200 \\ \hline \end{array} \)

[2]

(b) One of these 200 apples is chosen at random.

Write down the probability that this apple is good.

....................................................... [1]

20.
Theory 2 Marks
CH5 - Geometry

Work out the value of x.
[Image_1: Right triangle with sides 6 cm, 8 cm, and hypotenuse x cm]
x = ext{.................................}

21.
Theory 4 Marks
CH11 - Statistics

The scatter diagram shows a correlation between $x$ and $y$.

(a) Write down the type of correlation shown in the scatter diagram.
................................................ [1]
(b) The mean point is (14, 18).
(i) Draw the line of best fit. [2]
(ii) Use your line of best fit to estimate the value of $x$ when $y = 25$.
$x =$ ........................................... [1]

22.
Theory 2 Marks
CH7 - Mensuration

A sphere has a radius of 3 cm.
Find the surface area of the sphere. Give your answer in terms of $\pi$.
.......................... cm$^2$

23.
Theory 1 Marks
CH5 - Geometry

These triangles are similar.
Find the value of $x$.

$x = \text{.................................}$

24.
Theory 2 Marks
CH3 - Functions

Describe fully the \textbf{single} transformation that maps $y = x^2$ onto $y = x^2 + 4$.

25.
Theory 2 Marks
CH2 - Algebra

Solve the simultaneous equations.

$3x + y = 13$
$2x + y = 10$

$x =$ ext{.....................}
$y =$ ext{.....................}