All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 5 2020 Winter Zone 2
Theory
MCQ
01.
Theory 12 Marks
CH5 - Geometry

(a) This right-angled triangle is drawn on a $1 \text{ cm}^2$ grid.
(i) Measure and write down the length of the hypotenuse. .................................................. [1]
(ii) Show that the perimeter is 12. .................................................. [1]
(iii) Find the area of the triangle. .................................................. [1]

(b) (i) Find the perimeter of this triangle. .................................................. [2]
(ii) Find the area of this triangle. .................................................. [2]

(c) Complete the table for right-angled triangles with sides $b$, $h$ and $w$. | $b$ | $h$ | $w$ | Perimeter, $P$ | Area, $A$ | |-----|-----|-----|----------------|-----------| | 12 | 5 | 13 | 30 | 30 | | 84 | 13 | 85 | | | | 24 | | 25 | 56 | 84 | | 60 | 11 | | 132 | |

02.
Theory 6 Marks
CH5 - Geometry

(a)
This triangle has perimeter $P = 60$.
Show that the calculation $\frac{60}{2} \times \left(\frac{60}{2} - 26\right)$ gives the correct area for this triangle.
[3]

(b)
This triangle has perimeter $P = 112$.
Show that the calculation $\frac{112}{2} \times \left(\frac{112}{2} - 50\right)$ gives the correct area for this triangle.
[3]

03.
Theory 13 Marks
CH5 - Geometry

(a) Complete the table.

[Table_1]

\begin{array}{|c|c|c|c|c|c|} \hline b & h & w & P & A & \text{Calculation} \\ \hline 24 & 10 & 26 & 60 & 120 & \frac{60}{2} \times \left(\frac{60}{2} - 26\right) = 120 \\ \hline 12 & 9 & 15 & 36 & 54 & \frac{36}{2} \times \left(\frac{36}{2} - 15\right) = 54 \\ \hline 48 & 50 & & 112 & & \frac{112}{2} \times \left(\frac{112}{2} - 50\right) = \\ \hline 15 & 8 & 17 & 60 & & = 60 \\ \hline 21 & 29 & 70 & 210 & & = \\ \hline 12 & & 37 & 210 & & = \\ \hline \end{array}
[8]

(b) Write an expression for the area of a right-angled triangle in terms of $P$ and $w$.
.......................................................... [1]

(c) ![Image](https://via.placeholder.com/168x134)
Use your expression from part (b) to find the area of this triangle.
.......................................................... [4]

04.
Theory 5 Marks
CH5 - Geometry

(a)
This is a rhombus.
Use Question 3(b) to write down an expression for the area of this rhombus in terms of $P$ and $w$. ................................................... [1]
(b) Use your expression from part (a) to find the area of this rhombus when $w = 41$ and $b = 40$. ................................................... [4]