All Questions: AS & A Level Physics - 9702 Paper 3 2015 Winter Zone 3
Theory
MCQ
01.
Theory 22 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

In this experiment, you will investigate the equilibrium of a wooden rod.
(a) Set up the apparatus as shown in Fig. 1.1.

The mass $m$ should be 60g. The string should be approximately half-way along the wooden rod. The spring should be horizontal.
(b) (i) Measure and record the length $L$ of the coiled part of the spring.
$L = \text{................................................} \ [1]$
(ii) Measure and record the height $h$ of the loop of the spring above the bench.
$h = \text{................................................}$
(iii) Measure and record the angle $\theta$ between the wooden rod and the bench.
$\theta = \text{................................................}^{\circ}$
(c) Change mass $m$ to 80g.
Adjust the position of the spring and string so that the length $L$ is the same as in (b)(i) and the string is horizontal.
Repeat (b)(ii) and (b)(iii).
$h = \text{................................................}$
$\theta = \text{................................................}^{\circ} \ [1]$
(d) (i) Copy your value of $L$ from (b)(i).
$L = \text{................................................}$
(ii) Change $m$ and repeat (b)(ii) and (b)(iii) until you have six sets of values of $m$, $h$ and $\theta$.
For each value of $m$, adjust the position of the spring and string so that $L$ is the same as in (d)(i) and the spring is horizontal.
Include your values from (b) and (c).
Also include values of $\frac{h}{\cos \theta}$ in your table.
[10]
(e) (i) Plot a graph of $\frac{h}{\cos \theta}$ on the $y$-axis against $m$ on the $x$-axis.
[3]
(ii) Draw the straight line of best fit.
[1]
(iii) Determine the gradient and $y$-intercept of this line.
$\text{gradient} = \text{................................................}$
$\text{y-intercept} = \text{................................................} \ [2]$
(f) The quantities $h$, $\theta$ and $m$ are related by the equation $\frac{h}{\cos \theta} = Am + B$ where $A$ and $B$ are constants.
Using your answers in (e)(iii), determine the values of $A$ and $B$. Give appropriate units.
$A = \text{................................................}$
$B = \text{................................................} \ [2]$

02.
Theory 24 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

(a) (i) Set up the apparatus as shown in Fig. 2.1.

Support the wooden rod by passing it through the loop of the spring and the long string loop.
Mass $m_1$ should be 200 g and mass $m_2$ should be 100 g.
The bottom of mass $m_1$ should be approximately 6 cm above the bench.
(ii) Adjust the apparatus until the wooden rod is balanced and horizontal. The spring and long string loop should be vertical.
(iii) Measure and record the distances $x$, $y$ and $z$ as shown in Fig. 2.1, where
$x$ is the distance between the loop above $m_1$ and the spring loop,
$y$ is the distance between the spring loop and the long string loop,
$z$ is the distance between the long string loop and the loop above $m_2$.

$x = \text{..........................................................}$
$y = \text{..........................................................}$
$z = \text{..........................................................}$ [2]
(iv) Estimate the percentage uncertainty in your value of $y$.
percentage uncertainty = \text{..........................................................} [1]

(b) Calculate $C$ where
$$C = m_1(x + y)^2 + m_2z^2.$$
$C = \text{..........................................................}$ [1]

(c) (i) Pull the left side of the wooden rod down by 5 cm.
Release the wooden rod and watch the movement.
The wooden rod will move up and down again, completing a cycle as shown in Fig. 2.2.

(ii) The time taken for one complete cycle is $T$.
By timing several of these complete cycles, determine an accurate value for $T$.
$T = \text{..........................................................}$ [2]
(iii) Calculate $T^2$.
$T^2 = \text{..........................................................}$
(iv) Justify the number of significant figures that you have given for your value of $T^2$.
........................................................................................................................
........................................................................................................................
........................................................................................................................ [1]

(d) Keeping distance $y$ constant, change $m_2$ to 50 g and repeat (a)(ii), (a)(iii), (b), (c)(i), (c)(ii) and (c)(iii).
$x = \text{..........................................................}$
$y = \text{..........................................................}$
$z = \text{..........................................................}$
$C = \text{..........................................................}$
$T = \text{..........................................................}$
$T^2 = \text{..........................................................}$ [3]

(e) It is suggested that the relationship between $T$ and $C$ is
$$T^2 = kC$$
where $k$ is a constant.
(i) Using your data, calculate two values of $k$.
first value of $k = \text{..........................................................}$
second value of $k = \text{..........................................................}$ [1]
(ii) Explain whether your results in (e)(i) support the suggested relationship.
........................................................................................................................
........................................................................................................................
........................................................................................................................ [1]

(f) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ........................................................................................................................
........................................................................................................................
2. ........................................................................................................................
........................................................................................................................
3. ........................................................................................................................
........................................................................................................................
4. ........................................................................................................................
........................................................................................................................ [4]
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ........................................................................................................................
........................................................................................................................
2. ........................................................................................................................
........................................................................................................................
3. ........................................................................................................................
........................................................................................................................
4. ........................................................................................................................
........................................................................................................................ [4]