No questions found
(a) Set up the circuit shown in Fig. 1.1.
F and G are crocodile clips.
Place G on the wire so that the distance \( x \) between the ends of F and G is approximately 40 cm.
Measure and record \( x \).
\( x = \text{.............................................................} \)
Close the switch.
Record the voltages \( V_1 \) and \( V_2 \).
\( V_1 = \text{.............................................................} \)
\( V_2 = \text{.............................................................} \)
Open the switch.
[2]
(b) Vary \( x \) until you have six sets of readings of \( x, V_1 \) and \( V_2 \).
Record your results in a table. Include values of \(( V_2-V_1 )\) and \( \frac{V_1}{x} \) in your table.
[10]
(c) (i) Plot a graph of \(( V_2-V_1 )\) on the y-axis against \( \frac{V_1}{x} \) on the x-axis.
[3]
(ii) Draw the straight line of best fit.
[1]
(iii) Determine the gradient and \( y \)-intercept of this line.
gradient = \( \text{.............................................................} \)
y-intercept = \( \text{.............................................................} \)
[2]
(d) It is suggested that the quantities \( V_2, V_1 \) and \( x \) are related by the equation
\( (V_2-V_1) = \frac{PV_1}{x} + Q \)
where \( P \) and \( Q \) are constants.
Using your answers in (c)(iii), determine values for \( P \) and \( Q \). Give appropriate units.
\( P = \text{.............................................................} \)
\( Q = \text{.............................................................} \)
[2]
(a) Set up the apparatus as shown in Fig. 2.1.
• Adjust the string in the split cork so that the distance $L$ between the bottom of the split cork and the centre of the bob is approximately 55 cm.
• Measure and record $L$.
$L = \text{.................................................}$
• Calculate $\frac{L}{2}$.
$\frac{L}{2} = \text{......................................................}$ [1]
(b)
(i)• Attach the other boss and clamp and the wooden rod to the stand as shown in Fig. 2.2.
• Adjust the position of the wooden rod so that, when the string is touching the rod, the angle $A$ between the vertical and the string is approximately 14°, as shown in Fig. 2.2.
• Without changing the length of the pendulum, ensure the distance between the wooden rod and the centre of the bob is $\frac{L}{2}$.
• Measure and record angle $A$.
$A = \text{.................................................}$ [1]
(ii) Estimate the percentage uncertainty in your value of $A$.
percentage uncertainty = ..................................................... [1]
(c)
(i)• Pull the bob away from the wooden rod so that the angle between the string and the vertical is 45°, as shown in Fig. 2.3.
• Release the bob. The bob will oscillate and hit the wooden rod.
• Determine the period $T$ of these oscillations.
$T = \text{.................................................}$ [2]
(ii) Calculate $d$ where
$d = \frac{\sin A}{\sin 45^\circ}$.
$d = \text{.................................................}$ [1]
(iii) Justify the number of significant figures that you have given for your value of $d$.
.............................................................................................................................
.............................................................................................................................
............................................................................................................................. [1]
(d) Move the position of the wooden rod so that angle $A$ is approximately 28°.
• Without changing the length of the pendulum, ensure the distance between the wooden rod and the centre of the bob is $\frac{L}{2}$.
• Measure and record angle $A$ and repeat (c)(i) and (c)(ii).
$A = \text{.................................................}$
$T = \text{.................................................}$
$d = \text{.................................................}$ [3]
(e) It is suggested that the relationship between $T$ and $d$ is
$ T = k (d + 1.707) $
where $k$ is a constant.
(i) Using your data, calculate two values of $k$.
first value of $k = \text{.................................................}$
second value of $k = \text{.................................................}$ [1]
(ii) Explain whether your results support the suggested relationship.
.............................................................................................................................
.............................................................................................................................
............................................................................................................................. [1]
(f)
(i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. .......................................................................................................................
.............................................................................................................................
2. .......................................................................................................................
.............................................................................................................................
3. .......................................................................................................................
.............................................................................................................................
4. .......................................................................................................................
.............................................................................................................................
[4]
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. .......................................................................................................................
.............................................................................................................................
2. .......................................................................................................................
.............................................................................................................................
3. .......................................................................................................................
.............................................................................................................................
4. .......................................................................................................................
.............................................................................................................................
[4]