All Questions: AS & A Level Physics - 9702 Paper 3 2013 Summer Zone 1
Theory
MCQ
01.
Theory 12 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

(a) Measure and record the distance $L$ between the two holes in the wooden strip as shown in Fig. 1.1.

$L = \text{..............................} \text{ m}$ [1]
(b) Write down the mass $M$ given on the card.
$M = \text{..............................} \text{ kg}$
(c) (i) Set up the apparatus as shown in Fig. 1.2, with mass $m = 0.040 \text{ kg}$.

(ii) Adjust the position of the wooden strip until it balances.
Measure and record the distance $d$, as shown in Fig. 1.2.
$d = \text{..............................} \text{ m}$ [1]
(d) Vary $m$ and repeat (c)(ii) until you have six sets of readings of $m$ and $d$.
Include values of $\frac{1}{d}$ in your table.
[10]
(e) (i) Plot a graph of $\frac{1}{d}$ on the $y$-axis against $m$ on the $x$-axis. [3]
(ii) Draw the straight line of best fit. [1]
(iii) Determine the gradient and $y$-intercept of this line.
gradient = \text{.................................}
$y$-intercept = \text{...................................} [2]
(f) The quantities $d$ and $m$ are related by the equation
$$\frac{1}{d} = Pm + Q$$
where $P$ and $Q$ are constants.
Using your answers in (e)(iii), determine the values of $P$ and $Q$.
Give appropriate units.
$ P = \text{...................................}$
$ Q = \text{...................................}$ [1]
(g) The constant $P$ is related to $L$ and $M$ by
$$ P = \frac{1}{kML} $$
where $k$ is a constant.
Using your answers in (a), (b) and (f), calculate a value for $k$.
You need not include units for $k$.
$ k = \text{...................................[1]} $

02.
Theory 16 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

In this experiment, you will investigate the motion of a wooden rod supported by a string.
(a) (i) Set up the apparatus as shown in Fig. 2.1 with height $h$ approximately 40 cm.

The short wooden rod should be held firmly in the clamp.
Place the bracket on the base of the stand and rest the head of the nail in the centre of the bracket.

(ii) Measure and record the angle $\theta$ between the string and the long wooden rod as shown in Fig. 2.1.
$\theta$ = ......................................................[2]

(iii) Estimate the percentage uncertainty in your value of $\theta$.
percentage uncertainty = ........................................[1]

(iv) Calculate $\sin \theta$.
$\sin \theta$ = ...............................................[1]

(b) Gently displace the end of the long wooden rod to the left as shown in Fig. 2.2 (top view).
Release the rod and watch the movement.
The rod will move to the right and back towards the left, completing a swing.
The time taken for one complete swing is $T$.
By timing several of these complete swings, determine an accurate value for $T$.
$T$ = .........................................................[2]

(c) (i) Reduce $h$ to approximately 20 cm.

(ii) Repeat (a)(ii), (a)(iv) and (b).
$\theta$ = ....................................................
$\sin \theta$ = ................................................
$T$ = .........................................................[3]

(d) It is suggested that the relationship between $T$ and $\theta$ is

$$ T^2 = k \sin \theta $$

where $k$ is a constant.

(i) Using your data, calculate two values of $k$.
first value of $k$ = .........................................
second value of $k$ = ......................................... [1]

(ii) Justify the number of significant figures that you have given for your values of $k$.
......................................................................................................
......................................................................................................
......................................................................................................[1]

(iii) Explain whether your results in (d)(i) support the suggested relationship.
......................................................................................................
......................................................................................................
......................................................................................................
......................................................................................................[1]

(e) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ......................................................................................................
2. ......................................................................................................
3. ......................................................................................................
4. ......................................................................................................[4]

(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ......................................................................................................
2. ......................................................................................................
3. ......................................................................................................
4. ......................................................................................................[4]