All Questions: AS & A Level Physics - 9702 Paper 3 2013 Winter Zone 6
Theory
MCQ
01.
Theory 23 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

In this experiment, you will investigate the potential difference between two points in a circuit.
(a) Assemble the circuit of Fig. 1.1.

(b) (i) Connect the voltmeter across the power supply.
Record the voltmeter reading $E$.
$$E = ext{..................................................} \; [1]$$
(ii) Disconnect the voltmeter from the power supply.

(c) (i) Position the voltmeter leads on the wires at distance $x$ from the zero ends of both rules as shown in Fig. 1.2, where $x$ is approximately 20 cm.

(ii) Record $x$ and record the voltmeter reading $V$.
Include the sign ($+$ or $−$) of $V$.
$$x = ext{..................................................}$$
$$V = ext{..................................................}$$
(iii) By moving both contacts, change $x$ until the voltmeter reads zero.
Record $x$.
$$x = ext{..................................................} \; [1]$$

(d) Repeat (c)(i) and (c)(ii) with different values of $x$ until you have six sets of values of $x$ and $V$.
Include values of $\frac{V}{E}$ in your table.

(e) (i) Plot a graph of $\frac{V}{E}$ on the $y$-axis against $x$ on the $x$-axis.

(ii) Draw the straight line of best fit.
(iii) Determine the gradient and $y$-intercept of this line.
gradient $= ext{..................................................}$
$y$-intercept $= ext{..................................................} \; [2]$$

(f) The quantities $V$, $E$ and $x$ are related by the equation
$$\frac{V}{E} = ax + b$$
where $a$ and $b$ are constants.
Use your answers from (e)(iii) to determine the values of $a$ and $b$.
Give appropriate units.
$$a = ext{..................................................}$$
$$b = ext{..................................................} \; [2]$$

02.
Theory 26 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

(a) You are provided with three spheres as shown in Fig. 2.1.

[Image_1: Fig. 2.1]

(i) Measure and record the mass $m_A$ of the sphere labelled A.

$m_A = \text{.............................} \text{g}$ [1]

(ii) Measure and record the mass $m_B$ of the smaller of the two spheres labelled B.

$m_B = \text{.............................} \text{g}$

(iii) Calculate the value of $R$, where

$$R = \left(\frac{2m_A}{m_A + m_B}\right)^2.$$

$R = \text{.............................}$ [1]

(iv) Justify the number of significant figures you have given for your value of $R$.

..............................................................................................................................
..............................................................................................................................
......................................................................................................................[1]

(b) You are provided with a track mounted on a board.
Place the smaller sphere B on the track at the lowest point.
Measure and record the height $h_0$ of the bottom of the sphere above the bench, as shown in Fig. 2.2.

$h_0 = \text{.............................}$ [1]

[Image_2: Fig. 2.2]

(c) Place sphere A on the track and resting against the tape, then release it so that it collides with sphere B.
Take measurements to find the maximum height $h_B$ reached by sphere B after the collision, as shown in Fig. 2.3.

$h_B = \text{.............................}$ [2]

[Image_3: Fig. 2.3]

(d) Estimate the percentage uncertainty in your value of $h_B$.

percentage uncertainty = \text{.............................} [1]

(e) Copy the value of $m_A$ from (a)(i). Repeat steps (a)(ii), (a)(iii) and (c) using sphere A and the larger of the two spheres labelled B.

$m_A = \text{.............................} \text{g}$

$m_B = \text{.............................} \text{g}$

$R = \text{.............................}$

$h_B = \text{.............................}$ [3]

(f) It is suggested that the relationship between $h_B$ and $R$ is
$$h_B - h_0 = kR$$
where $k$ is a constant.

(i) Using your data, calculate two values of $k$.

first value of $k = \text{.............................}$

second value of $k = \text{.............................}$ [1]

(ii) Explain whether your results support the suggested relationship.

..............................................................................................................................
..............................................................................................................................
..............................................................................................................................
..............................................................................................................................[1]

(g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.

1. ..............................................................................................................................
..............................................................................................................................

2. ..............................................................................................................................
..............................................................................................................................

3. ..............................................................................................................................
..............................................................................................................................

4. ..............................................................................................................................
..............................................................................................................................
[4]

(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.

1. ..............................................................................................................................
..............................................................................................................................

2. ..............................................................................................................................
..............................................................................................................................

3. ..............................................................................................................................
..............................................................................................................................

4. ..............................................................................................................................
..............................................................................................................................
[4]