All Questions: AS & A Level Physics - 9702 Paper 3 2013 Winter Zone 4
Theory
MCQ
01.
Theory 20 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

(a) (i) Suspend the single spring and the mass hanger from the rod of one of the clamps. Measure and record the height $h_1$ of the mass hanger above the bench, as shown in Fig. 1.1.



$h_1 = \text{...........................}$

(ii) Add the 50 g slotted mass to the hanger. Measure and record the new height $h_2$ of the mass hanger above the bench.

$h_2 = \text{...........................}$ [1 mark]

(iii) Calculate the change in height $C$, where $C = h_1 - h_2$.

$C = \text{...........................}$

(b) (i) Assemble the apparatus as shown in Fig. 1.2, with the mass $M$ near to the middle of the wooden strip.



(ii) Adjust the apparatus so that the wooden strip is horizontal and the springs are vertical.

(iii) Measure and record the distance $x$ from the left-hand hole in the wooden strip to the string loop supporting $M$, as shown in Fig. 1.2.

$x = \text{...........................}$

(iv) Measure and record the length $L_A$ of the coiled section of the left-hand spring, and the length $L_B$ of the coiled section of the right-hand spring.

$L_A = \text{...........................}$

$L_B = \text{...........................}$ [1 mark]

(c) Reposition the string loop supporting $M$. Repeat (b)(ii), (b)(iii) and (b)(iv) until you have six sets of values of $x$, $L_A$ and $L_B$.
Include values for $(L_A - L_B)$ and for $\frac{(L_A - L_B)}{C}$ in your table.

(d) (i) Plot a graph of $\frac{(L_A - L_B)}{C}$ on the $y$-axis against $x$ on the $x$-axis. [3 marks]

(ii) Draw the straight line of best fit. [1 mark]

(iii) Determine the gradient and $y$-intercept of this line.

gradient = \text{...........................}
$y$-intercept = \text{...........................}$ [2 marks]

(e) The quantities $L_A$, $L_B$, $C$ and $x$ are related by the equation $\frac{(L_A - L_B)}{C} = ax + b$ where $a$ and $b$ are constants. Use your answers from (d)(iii) to determine the values of $a$ and $b$. Give appropriate units.

$a = \text{...........................}$
$b = \text{...........................}$ [2 marks]

02.
Theory 10 Marks
CH1 - PHYSICAL QUANTITIES & UNITS

In this experiment, you will investigate the equilibrium of a spool of thread.

(a) (i) Using the smaller of the two spools provided, take measurements to determine the outside diameter $D$ and the inner diameter $d$, as shown in Fig. 2.1.

$D = \text{................................................} \text{mm}$
$d = \text{ ................................................} \text{mm}$ [2]
(ii) Calculate the ratio $R$, where $R = \frac{d}{D}$.
$R = \text{................................................}$ [1]
(b) Justify the number of significant figures that you have given for your value of $R$.
..............................................................................................
..............................................................................................
..............................................................................................
.............................................................................................. [1]

(c) Use the stand, boss and clamp to support the protractor as shown in Fig. 2.2.


(d) (i) Using the smaller of the two spools, wrap the thread around its inner diameter until there is about 30 cm of thread left unwound.
(ii) With the spool on the bench, gently pull the thread vertically as shown in Fig. 2.3.

(iii) The spool will move to the left until the thread reaches a constant angle $\theta$ to the vertical with the spool rotating but not moving along the bench, as shown in Fig. 2.4.

(iv) Measure and record the angle $\theta$.
$\theta = \text{................................................}$ [2]
(e) Estimate the percentage uncertainty in your value of $\theta$.
percentage uncertainty = \text{................................................} [1]

(f) Repeat (a) and (d) but using the larger of the two spools.
$D = \text{................................................}$
$d = \text{................................................}$
$R = \text{................................................}$
$\theta = \text{................................................}$ [3]

(g) It is suggested that the relationship between $\theta$ and $R$ is

$$ \sin \theta = kR $$
where $k$ is a constant.
(i) Using your data, calculate two values of $k$.
first value of $k = \text{................................................}$
second value of $k = \text{................................................}$ [1]
(ii) Explain whether your results support the suggested relationship.
..............................................................................................
..............................................................................................
..............................................................................................
.............................................................................................. [1]

(h) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ..............................................................................................
..............................................................................................
2. ..............................................................................................
..............................................................................................
3. ..............................................................................................
..............................................................................................
4. ..............................................................................................
.............................................................................................. [4]
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ..............................................................................................
..............................................................................................
2. ..............................................................................................
..............................................................................................
3. ..............................................................................................
..............................................................................................
4. ..............................................................................................
.............................................................................................. [4]