No questions found
(a) You have been provided with a wooden beam with 11 holes.
Measure and record the distance $k$ along the wooden beam between the centres of hole 1 and hole 5 as shown in Fig. 1.1.
$k$ = ..........................................................
(b) (i) Set up the apparatus as shown in Fig. 1.2 with the nail through hole 6 of the wooden beam.
The mass $m$ is 300 g. Position the mass $m$ approximately 15 cm from hole 1.
(ii) Adjust the apparatus so that the spring is vertical and the wooden beam is horizontal.
The distance $a$ is the distance between the nail and the string attached to the spring.
The distance $b$ is the distance between the nail and the string attached to the mass as shown in Fig. 1.3.
(iii) Measure and record $a$ and $b$.
$a$ = ............................................................
$b$ = ............................................................ [1]
(iv) Measure and record the length $L$ of the stretched spring as shown in Fig. 1.4.
$L$ = .............................................................. [1]
(c) Vary $a$ by moving the nail to a different hole.
Adjust $b$ until the value of $L$ is the same as in (b)(iv).
Ensure that the spring is vertical and the beam is horizontal.
Measure and record $a$ and $b$.
$a$ = ............................................................
$b$ = ............................................................
(d) Repeat (c) until you have six sets of readings of $a$ and $b$.
Include values of $\frac{1}{b}$ and $\frac{a}{b}$ in your table.
(e) (i) Plot a graph of $\frac{1}{b}$ on the $y$-axis against $\frac{a}{b}$ on the $x$-axis. [3]
(ii) Draw the straight line of best fit. [1]
(iii) Determine the gradient and $y$-intercept of this line. [2]
gradient = .........................................................
$y$-intercept = .........................................................
(f) The quantities $a$ and $b$ are related by the equation
$\frac{1}{b} = -\frac{Pa}{b} + Q$
where $P$ and $Q$ are constants.
Use your answers in (e)(iii) to determine the values of $P$ and $Q$. Give appropriate units.
$P$ = ............................................................
$Q$ = ............................................................ [1]
(g) The mass $M$ of the wooden beam is given by
$$M = \frac{m}{kQ}.$$
Use values in (a), (b)(i) and (f) to determine the value of $M$.
Include a unit for $M$.
$M$ = ............................................................ [1]
In this experiment, you will investigate how the extension of a Plasticine cylinder under an applied load depends on the diameter of the cylinder.
(a) (i) Use the boards to roll the Plasticine into a cylinder of uniform diameter and approximate length 20 cm as shown in Fig. 2.1.
[Image_1: Fig. 2.1]
(ii) Use the micrometer to measure the diameter $d$ of the cylinder as shown in Fig. 2.1. Record $d$.
$d =$ .................................................... [3]
(iii) Estimate the percentage uncertainty in your value of $d$.
percentage uncertainty = .................................................... [1]
(b) (i) Make two shallow marks on the Plasticine cylinder as shown in Fig. 2.2. The distance $x$ between the marks should be approximately 10 cm.
[Image_2: Fig. 2.2]
The marks should not be deep enough to affect the strength of the cylinder.
(ii) Measure and record $x$.
$x$ = ....................................................
(c) (i) Attach the clip to one end of the cylinder. Hold the other end of the cylinder so that it hangs vertically as shown in Fig. 2.3.
[Image_3: Fig. 2.3]
(ii) Suspend a mass of 400 g from the clip as shown in Fig. 2.4 for a time of 60 s.
If the cylinder breaks within this time, repeat (a), (b) and (c)(i) and suspend a mass of 300 g for 60 s. If necessary, cross out your answers and write in your new answers. You will not be penalised for this.
[Image_4: Fig. 2.4]
(iii) Carefully remove the mass and clip from the cylinder.
(iv) Measure and record the distance $x_1$ between the two marks on the cylinder.
$x_1$ = .................................................... [1]
(v) Calculate the extension $e$ of the cylinder between the marks using
$$e = x_1 - x.$$
$e$ = .................................................... [1]
(d) (i) Use the boards to roll all the Plasticine into a cylinder of uniform diameter and approximate length 15 cm.
(ii) Using the same mass, repeat (a)(ii), (b) and (c).
$d =$ ....................................................
$x =$ ....................................................
$x_1 =$ ....................................................
$e =$ .................................................... [3]
(e) It is suggested that the relationship between $e$ and $d$ is $$e = \frac{k}{d^4}$$ where $k$ is a constant.
(i) Using your data, calculate two values of $k$.
first value of $k =$ ....................................................
second value of $k =$ .................................................... [1]
(ii) Justify the number of significant figures that you have given for your values of $k$.
..................................................................................................................
..................................................................................................................
.................................................................................................................. [1]
(iii) Explain whether your results in (e)(i) support the suggested relationship.
..................................................................................................................
..................................................................................................................
.................................................................................................................. [1]
(f) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.
1. ..................................................................................................................
..................................................................................................................
2. ..................................................................................................................
..................................................................................................................
3. ..................................................................................................................
..................................................................................................................
4. ..................................................................................................................
.................................................................................................................. [4]
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1. ..................................................................................................................
..................................................................................................................
2. ..................................................................................................................
..................................................................................................................
3. ..................................................................................................................
..................................................................................................................
4. ..................................................................................................................
.................................................................................................................. [4]