No questions found
Work out.
$$(0.01)^2$$
(a) Write $\frac{24}{60}$ in its lowest terms.
.......................................................... [1]
(b) Work out $\frac{5}{7} - \frac{1}{14}$.
.......................................................... [2]
This is a list of ten numbers.
19 24 16 17 22 14 28 34 20 18
(a) Find the range. ................................................................. [1]
(b) Find the median. ................................................................. [2]
Expand $x^3(8x-x^2)$.
Simplify $\left(9x^9y^4\right)^{0.5}.$
A regular polygon has 12 sides.
Find the size of an exterior angle of this polygon.
y varies as the square of (x+1).
When $y = 18$, $x = 2$.
Find $y$ when $x = 3$.
y = \text{.............................................} \quad [3]
Factorise.
(a) \(6ax - 8by - 3ay + 16bx\) .............................................. [2]
(b) \(5x^2 - 7x - 6\) .............................................. [2]
Write in standard form.
(a) 760900 ................................................................. [1]
(b) 0.08007 ............................................................. [1]
A, B, C, \text{ and } D \text{ lie on a circle, centre } O.
Find
(a) angle \( ABC \)
\( \text{Angle } ABC = \text{........................} \) [1]
(b) obtuse angle \( AOC \)
\( \text{Angle } AOC = \text{........................} \) [1]
(c) angle \( OCA \).
\( \text{Angle } OCA = \text{........................} \) [1]
[Image_1: Diagram of circle with points A, B, C, D and center O]
(a) Simplify.
$$\sqrt{2}\left(5\sqrt{8} - 7\sqrt{2}\right)$$ ........................................................ [2]
(b) Rationalise the denominator.
$$\frac{21}{3 - \sqrt{2}}$$ ........................................................ [2]
Vlad has two unbiased dice, each numbered 1, 2, 3, 4, 5, 6.
Vlad rolls the two dice and records the total score.
Find the probability that the total score is
(a) 13 .................................................... [1]
(b) 11. ..................................................... [2]
The point $A$ has coordinates $(4, -1)$ and the point $B$ has coordinates $(8, -3)$.
Find the equation of the perpendicular bisector of the line $AB$.
Give your answer in the form $y = mx + c$.
$y = \text{.................................}$
Write as a single fraction in its simplest form.
$$\frac{8}{4x-1} - \frac{3}{2x+1}$$