No questions found
Work out $\frac{3.6}{0.004}$.
These are the masses, in kilograms, of 16 newborn babies.
2.5 3.2 3.8 3.2 1.9 3.4 1.7 4.1
3.0 2.8 4.0 2.7 3.9 2.7 4.1 3.7
Complete the ordered stem-and-leaf diagram for the masses.
\[\begin{align*}
1 & \mid & \\
2 & \mid & \\
3 & \mid & \\
4 & \mid & \\
\end{align*}\]
Key: 3 | 2 = 3.2
Work out $2\frac{1}{2} \div 3\frac{1}{4}$.
Give your answer as a fraction in its simplest form.
Insert \textbf{two} pairs of brackets to make this statement correct.
\(3 \times 7 - 3 + 4 \times 2 = 32\)
$ABCD$ is a straight line and $BE$ is parallel to $CF$.
Find angle $ECF$.
Angle $ECF = ..........................$
(a) Factorise $a^2 - b^2$. ......................................................... [1]
(b) Work out $5.37^2 - 4.63^2$. ......................................................... [2]
Solve $2x + 3 < 5x - 12$.
Expand and simplify \((2\sqrt{3} - 5)(4 + \sqrt{3})\).
The diagram shows part of polygon $A$ and part of polygon $B$.
$A$ is a regular polygon with $n$ sides.
$B$ is a regular hexagon.
Find the value of $n$.
$n =$ ext{..............................}
Given \( c = 4 \times 10^7 \) and \( d = 5.8 \times 10^6 \),
Work out, giving your answers in standard form,
(a) \( c^2 \), .......................................................... [2]
(b) \( c - d \). .......................................................... [2]
Rearrange the formula to make $x$ the subject.
$$y = \frac{2}{x+3}$$
$$x = \text{........................................}$$
The area of this sector is $5\pi \text{ cm}^2$.
Find the value of $x$.
$x= \text{.............................}$
The heights, $h$ cm, of 100 plants are measured. The table shows the results.
[Table_1]
[Table_1 contents]
| Height, $h$ cm | Frequency |
| 0 < h \leq 40 | 15 |
| 40 < h \leq 80 | 40 |
| 80 < h \leq 120 | 45 |
Calculate an estimate for the mean height of the plants.
Find the value of $k$.
$k = \text{.................................}$
The diagram shows the line $x+y=8$.
On the diagram, show clearly the region defined by these inequalities.
$x+y \leq 8$, $x \geq 2$, $y \leq 3$
Simplify $\frac{x^2y - 3xy}{x^2 - 2x - 3}$.