All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2021 Summer Zone 3
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write 84\% as a fraction in its lowest terms.

02.
Theory 1 Marks
CH1 - Number

Work out $(1 - 0.8)^2$.

03.
Theory 1 Marks
CH2 - Algebra

Find the value of $x^2 - x$ when $x = -3$.

04.
Theory 1 Marks
CH5 - Geometry

A quadrilateral has all sides equal and exactly two lines of symmetry. Write down the mathematical name of this quadrilateral. ............................... [1]

05.
Theory 1 Marks
CH5 - Geometry

Find the value of $x$. [Image_1: Diagram showing angles $x^\circ$, $60^\circ$, $50^\circ$, and a right angle.] $x = \text{..........................................}$ [1]

06.
Theory 1 Marks
CH9 - Sets

On the Venn diagram, shade $A \cup B$.

07.
Theory 3 Marks
CH5 - Geometry

Find the size of one interior angle of a regular polygon with 20 sides.

08.
Theory 1 Marks
CH1 - Number

Find the value of $|-4| + 4$.

09.
Theory 2 Marks
CH1 - Number

A van has length 9 m.
It takes 1 second for the van to completely pass a gate of length 1 m.

Find the speed of the van.
Give your answer in km/h.

10.
Theory 2 Marks
CH10 - Probability

The faces of a die are numbered 1, 1, 2, 3, 3 and 4. When it is rolled it is equally likely to show any face. The die is rolled twice. Find the probability that it shows an odd number both times.

11.
Theory 3 Marks
CH2 - Algebra

Here are the first five terms of a sequence.

$$\frac{1}{4} \quad 1 \quad 4 \quad 16 \quad 64$$

(a) Find the next term. .............................................................. [1]

(b) Find the $n^{th}$ term. .............................................................. [2]

12.
Theory 2 Marks
CH2 - Algebra

Factorise.
$1 + a - c - ac$

13.
Theory 4 Marks
CH7 - Mensuration, CH5 - Geometry

The diagram shows two similar triangles, $ABC$ and $PQR$.

(a) Find the length of $PR$.



$PR = \text{.............................}$ cm [2]

(b) The triangles are the cross-sections of mathematically similar prisms.
The volume of the larger prism is $500 \text{ cm}^3$.
Find the volume of the smaller prism.

$\text{.............................}$ cm$^3$ [2]

14.
Theory 3 Marks
CH2 - Algebra

$A = P(1+x)^3$
Rearrange the formula to write $x$ in terms of $A$ and $P$.
$x = ext{............................................}$

15.
Theory 2 Marks
CH5 - Geometry

Points $Q, R, S$ and $T$ lie on the circle.
$AB$ is a tangent to the circle at $T$.
Angle $RTB = 70^{\circ}$.
Find angle $RQT$.

Angle $RQT = \text{..................................................} \; [2]$

16.
Theory 3 Marks
CH1 - Number

p varies inversely as the square root of q.
When $q = 9, p = 12$.
Find p when $q = 16$.

$p = \text{.................................}$ [3]

17.
Theory 2 Marks
CH1 - Number

Simplify by rationalising the denominator. $\frac{3}{2 \sqrt{2} - 1}$

18.
Theory 2 Marks
CH3 - Functions

The diagram shows the graph of $y = |ax + b|$, where $a > 0$.
Find the value of $a$ and the value of $b$.
a = ext{.........................................}
b = ext{.........................................}

19.
Theory 2 Marks
CH1 - Number

Write as a single fraction in its simplest form.
\( \frac{3}{x - 2} - 2 \) ........................................................................................ [2]

20.
Theory 3 Marks
CH3 - Functions

2\log p = 3\log x - \log y
Find $p$ in terms of $x$ and $y$.
\( p = \text{......................} \) [3]