All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2021 Summer Zone 3
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Write $\frac{4}{10}$ as a decimal.

02.
Theory 1 Marks
CH5 - Geometry

Complete the statement.
Two straight lines which meet at 90° are called ........................................................ lines. [1]

03.
Theory 2 Marks
CH10 - Probability

Xander spins this unbiased 8-sided spinner.

Find the probability that the spinner lands on an even number.
Give your answer as a decimal.


04.
Theory 1 Marks
CH1 - Number

Total mass of hay = mass of one bale \times number of bales
Work out the total mass of hay when there are 10 bales and the mass of each bale is 21 kg.
...................................... kg [1]

05.
Theory 2 Marks
CH1 - Number

From the list of numbers, write down

(a) the square number, .................................................... [1]

(b) the prime number. ...................................................... [1]

06.
Theory 2 Marks
CH5 - Geometry

On the diagram, draw all the lines of symmetry.

07.
Theory 1 Marks
CH1 - Number

Find 75\% of 200.

08.
Theory 1 Marks
CH1 - Number

Change 3\(\frac{1}{4}\) hours into minutes.

09.
Theory 1 Marks
CH1 - Number

Insert one pair of brackets to make this statement correct. $10 \div 2 + 2 + 1 = 2$

10.
Theory 1 Marks
CH4 - Coordinate geometry

The coordinates of two points are (1, 5) and (5, 5).
Work out the distance between the two points.

11.
Theory 2 Marks
CH11 - Statistics

Rosa wants to collect information about cars.
(a) Write down an example of discrete data that she could collect. .................................................................................................................... [1]
(b) Write down an example of continuous data that she could collect. .................................................................................................................... [1]

12.
Theory 2 Marks
CH5 - Geometry

Find the value of $c$.
Give a reason for your answer.
$c = \text{.......................}$ because $\text{...............................................................}$ [2]

13.
Theory 1 Marks
CH1 - Number

Write down the largest integer value of $x$ so that $x \leq -24$. .................................................................... [1]

14.
Theory 2 Marks
CH7 - Mensuration

Find the total surface area of a cube of side 2 cm. ............................... \text{cm}^2 \hphantom{.....} [2]

15.
Theory 1 Marks
CH1 - Number

A shark swims 200 metres in 40 seconds.
Find its average speed. ..................................... m/s [1]

16.
Theory 1 Marks
CH2 - Algebra

Factorise.

$$15a - 3b + 9c$$

17.
Theory 2 Marks
CH10 - Probability

Megan asked some people if they prefer to read emails on their phone or on their laptop. The results are shown in the table.

[Table_1]

| Age Range | Phone | Laptop |
|-----------|-------|--------|
| $10 < \text{ age } \leq 30$ | 9 | 1 |
| $30 < \text{ age } \leq 50$ | 6 | 4 |
| $50 < \text{ age } \leq 70$ | 3 | 7 |

One of these people is chosen at random.

Find the probability that they prefer to read emails on their phone.

18.
Theory 3 Marks
CH2 - Algebra

Find the value of $x$.

[Image_1: A triangle with angles $x^\circ$, $(x+10)^\circ$, and $60^\circ$]

$x = \text{.......................................}$

19.
Theory 1 Marks
CH1 - Number

Solve the inequality.
$x + 1 < 3$
......................................................... [1]

20.
Theory 1 Marks
CH1 - Number

A bag contains 20 almonds. The mean mass of an almond in the bag is 4 grams.
Work out the total mass of the almonds in the bag. ........................................... grams [1]

21.
Theory 4 Marks
CH9 - Sets

U = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}
A = \{ 1, 4, 5, 6, 9 \}
B = \{ 2, 4, 7, 10 \}
(a) Complete the Venn diagram by writing each element in the correct region.



[2]
(b) Find $A \cap B$.

$A \cap B = \{ \text{............................................} \}$ [1]
(c) Find $n(A \cup B)$.

...................................................... [1]

22.
Theory 4 Marks
CH1 - Number

(a) Write each number in standard form.
(i) 8500 ................................................................................................. [1]
(ii) 0.02 ................................................................................................ [1]

(b) Find the value of 8500 \times 0.02.
Write your answer in standard form. ................................................................................................. [2]

23.
Theory 2 Marks
CH3 - Functions

f(x) = x - 3
The domain of f(x) is $1 \leq x \leq 9$.
Find the range of f(x).

24.
Theory 1 Marks
CH4 - Coordinate geometry

Explain why the gradient of this line is $-2$.
........................................................................................................................
........................................................................................................................