No questions found
Find the highest common factor (HCF) of 60 and 90.
Insert one pair of brackets to make the statement correct.
$5 - 2 + 3 \times 2 = -5$
Let \( \mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) and \( \mathbf{q} = \begin{pmatrix} 1 \\ 6 \end{pmatrix} \)
Find \( 2\mathbf{p} - 3\mathbf{q} \).
Write 0.72 as a fraction in its lowest terms.
Answer ...................................... [1]
The mean of a list of 9 numbers is 6.
When a 10th number is included in the list the mean is 5.5.
Find the value of this 10th number.
Find the length of the hypotenuse of the triangle.
Answer ............................................. cm
Solve the simultaneous equations.
$$\begin{align} u - w &= 9 \\ 3u + w &= 19 \end{align}$$
\text{Answer } u = \text{..................................................}
w = \text{.................................................. [2]}
The scale of a map is 1 : 250 000.
Find the actual distance, in kilometres, between two cities which are 42 cm apart on the map.
Answer ....................................................... km
| x | < 4 and x is an integer. Find the smallest possible value of x.
Answer .............................................................. [1]
The first 4 terms of a sequence are 20, 13, 6 and -1.
Find
(a) the next term,
Answer(a) ............................................... [1]
(b) the nth term.
Answer(b) ............................................... [2]
Make $u$ the subject of the formula.
$v^2 = u^2 + 2as$
Answer $u =$ .......................................................
Factorise completely.
$2a - b + 2ax - bx$
Answer ........................................ [2]
Find the exact value of
(a) $3^{-3}$,
Answer(a) .................................................. [1]
(b) $16^{\frac{3}{4}}$,
Answer(b) .................................................. [1]
(c) $\cos 30^\circ$.
Answer(c) .................................................. [1]
Simplify $(64x^{12})^{\frac{1}{6}}$.
On each Venn diagram, shade the region indicated.
$$ (A \cup B)' $$
$$ (C \cup D) \cap E' $$
Find the equation of the straight line passing through $(-2, -4)$ and $(2, 0)$.
Answer $\text{.....................}$ [3]
Rationalise the denominator.
$$ \frac{3}{\sqrt{5} + 2} $$
(a) Factorise $3y - y^2$.
(b) Simplify $\frac{3y - y^2}{9 - y^2}$.
Find the value of
(a) $\frac{\log 4}{\log 8}$, Answer(a) .......................................................... [2]
(b) $\log_{4}8$. Answer(b) .......................................................... [1]
g(x) = \frac{2x+1}{x-1}, \; x \neq 1
Solve the equation \; g^{-1}(x) = 2.
Answer \; x = \text{..................................................} \; [1]