All Questions: Cambridge IGCSE Mathematics - International - 0607 - Core Paper 1 2015 Summer Zone 1
Theory
MCQ
01.
Theory 3 Marks
CH1 - Number

Here is a bus timetable.

[Table_1]

(a) Find how many minutes it takes Bus 4 to travel from A to E.

Answer(a) .................................................. min [1]

(b) Jane arrives at B at 16 10.

Find how many minutes she has to wait for the next bus.

Answer(b) .................................................. min [1]

(c) Desi travels from C to E. He must arrive at E by 17 00.
Which is the latest bus that he can catch to arrive on time?

Answer(c) .................................................. [1]

02.
Theory 1 Marks
CH1 - Number

Find the lowest common multiple (LCM) of 2 and 5.

Answer ...........................

03.
Theory 2 Marks
CH5 - Geometry

Shade three more squares so that the diagram has rotational symmetry of order 4.

04.
Theory 2 Marks
CH5 - Geometry

Measure and write down the size of the angles marked $x$ and $y$.



$x = \text{.....................}$
$y = \text{.....................}$

05.
Theory 5 Marks
CH5 - Geometry

From the list above, write down the mathematical name of each of the following shapes.

(a)
Answer(a) .................................................................

(b)
Answer(b) .................................................................

(c)
Answer(c) .................................................................

(d)
Answer(d) .................................................................

(e)
Answer(e) .................................................................

06.
Theory 2 Marks
CH1 - Number

(a) Write $4 \times 4 \times 4$ as a power of 4.

Answer(a) ............................................................. [1]

(b) Write down the value of $8^0$.

Answer(b) ............................................................. [1]

07.
Theory 2 Marks
CH4 - Coordinate geometry

(a) Write down the co-ordinates of $P$.
Answer(a) $\; (\text{.....................} , \text{.....................}) \; [1]$

(b) Write down the co-ordinates of the point where the line $L$ crosses the $x$-axis.
Answer(b) $\; (\text{.....................} , \text{.....................}) \; [1]$


08.
Theory 3 Marks
CH1 - Number

(a) (i) The mass of a blue whale is 180000 kg.
Write 180000 in standard form.

Answer(a)(i) .............................. [1]

(ii) Change 180000 kg into tonnes.

Answer(a)(ii) .............................. tonnes [1]

(b) A blue whale eats shrimps. The mass of a shrimp is 0.001 kg.
Write 0.001 in standard form.

Answer(b) .............................. [1]

09.
Theory 2 Marks
CH6 - Vectors and transformations

Point $A$ has co-ordinates $(1, 4)$. Point $B$ has co-ordinates $(6, 3)$.
Write $\overrightarrow{AB}$ as a column vector.
You may use the grid to help you.


10.
Theory 2 Marks
CH11 - Statistics

The scatter diagram shows the marks of 10 students in a mathematics test and in a physics test. (a) What type of correlation is shown on the scatter diagram? Answer(a) ................................................................. [1] (b) Another student scored 88 in the physics test but was absent for the mathematics test. Use the line of best fit to estimate the mathematics mark for this student. Answer(b) ................................................................. [1]

11.
Theory 2 Marks
CH5 - Geometry

The two triangles are similar.
Find the value of \( y \).
[Image_1: Diagram of two similar triangles with sides labeled 2 cm, 5 cm, 15 cm, and \( y \) cm]

12.
Theory 5 Marks
CH2 - Algebra

(a) Expand and simplify.

$6(x - 2y) + 3(2x - y)$

Answer(a) ................................................... [2]

(b) Factorise fully.

$5p^2q + 10pq^2$

Answer(b) ................................................... [3]

13.
Theory 3 Marks
CH2 - Algebra

Solve the following simultaneous equations.

$$4x + y = 17$$
$$x - 3y = 1$$

Answer $x = \text{.........................................................}$
$y = \text{.........................................................}$

14.
Theory 2 Marks
CH10 - Probability

A bag contains only red balls and blue balls.
The probability of picking a red ball at random from the bag is \( \frac{8}{15} \).

(a) What is the probability of picking a blue ball from the bag?

\text{Answer(a)} \hspace{2cm} \text{.......................................................} \hspace{1cm} [1]

(b) Jane says that there must be exactly 15 balls in the bag.

Is she correct?
Give a reason for your answer.

\text{Answer(b)} \hspace{2cm} \text{...............................} \text{because} \text{...............................................} \hspace{1cm} [1]

15.
Theory 4 Marks
CH11 - Statistics

The cumulative frequency diagram shows the scores of 60 students in an English test. Find (a) the median, Answer(a) .............................................................. [1] (b) the lower quartile, Answer(b) .............................................................. [1] (c) the interquartile range, Answer(c) .............................................................. [1] (d) the number of students who scored more than 90. Answer(d) ............................................................ [1]