All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 4 2015 Summer Zone 1
Theory
MCQ
01.
Theory 6 Marks
CH11 - Statistics

The table shows the marks that 80 students scored in an examination.

[Table_1]

(a) Write down the mode.

Answer(a) ................................................................. [1]

(b) Write down the range.

Answer(b) ................................................................. [1]

(c) Find the median.

Answer(c) ................................................................. [1]

(d) Find the interquartile range.

Answer(d) ................................................................. [2]

(e) Calculate the mean.

Answer(e) ................................................................. [1]

02.
Theory 4 Marks
CH2 - Algebra

Solve the simultaneous equations.
You must show all your working.

\( 5x - 2y = 11.5 \)
\( 4x + 3y = 0 \)

Answer \( x = \text{......................................................} \)
\( y = \text{.................................................................} \) [4]

03.
Theory 3 Marks
CH1 - Number

A car of length 4.5 metres is travelling at 72km/h. The car approaches a tunnel of length 260 metres.

(a) Change 72 km/h into m/s.

Answer(a) ..................................................... m/s [1]

(b) Find the time it will take for the car to pass completely through the tunnel. Give your answer in seconds.

Answer(b) ..................................................... s [2]

04.
Theory 7 Marks
CH6 - Vectors and transformations

(a) Describe fully the single transformation that maps triangle A onto triangle B.
Answer(a) ............................................................................................................................................................
....................................................................................................................................................................... [2]

(b) Rotate triangle B through 90° clockwise, centre (–1, 6). Draw this triangle and label it C. [3]

(c) Describe fully the single transformation that maps triangle C onto triangle A.
Answer(c) ............................................................................................................................................................
....................................................................................................................................................................... [2]

05.
Theory 9 Marks
CH3 - Functions, CH2 - Algebra

(a) $y$ varies inversely as the square root of $x$.
$y = 5$ when $x = 9$.
(i) Find the value of $y$ when $x = 25$.

Answer(a)(i) $y = \text{.........................................................}$ [2]

(ii) Find the value of $x$ when $y = 25$.

Answer(a)(ii) $x = \text{.........................................................}$ [2]

(iii) Find $x$ in terms of $y$.

Answer(a)(iii) $x = \text{.........................................................}$ [2]

(b)
Find the equation of this quadratic curve.

Answer(b) $\text{.........................................................}$ [3]

06.
Theory 10 Marks
CH9 - Sets

The Venn diagram shows the sets $A$, $B$ and $C$.

$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$
$A = \{\text{factors of 12}\}$
$B = \{\text{factors of 6}\}$
$C = \{11, 12, 13, 14\}$

(a) List the elements of sets $A$ and $B$.

Answer(a) $A = \{\text{.................................................................}\}$
$B = \{\text{.................................................................}\}$ [2]

(b) Write all the elements of $U$ in the correct regions of the Venn diagram above. [3]

(c) List the elements of
(i) $A \cap B$,
Answer(c)(i) $\{\text{...............................................................}\}$ [1]
(ii) $A' \cap C$,
Answer(c)(ii) $\{\text{...............................................................}\}$ [1]
(iii) $B \cup C'$.
Answer(c)(iii) $\{\text{...............................................................}\}$ [1]

(d) Find
(i) $n(A \cup B \cup C)'$,
Answer(d)(i) $\text{...............................................................}$ [1]
(ii) $n(A \cap B \cap C)'$.
Answer(d)(ii) $\text{...............................................................}$ [1]

07.
Theory 7 Marks
CH1 - Number

Squash balls have radius 1.5 cm. They are sold in boxes. Each box is a cuboid. Each box has length 15 cm, width 12 cm and height 3 cm.
(a) Show that the maximum number of balls in a box is 20. [1]
(b) Calculate the volume of one ball.
Answer(b) ................................................ cm^3 [2]
(c) Calculate the total volume of 20 balls.
Answer(c) ................................................ cm^3 [1]
(d) Write your answer to part (c) in standard form.
Answer(d) ................................................ cm^3 [1]
(e) Calculate the percentage of the volume of the box that the 20 balls fill.
Answer(e) ................................................ % [2]

08.
Theory 6 Marks
Circle Theorems, CH5 - Geometry

A, B and C lie on a circle, centre O.
AP and BP are tangents to the circle.
AB intersects OP at the point X and angle OPB = 26°.

 
(a) Find the size of
(i) angle ABP


(ii) angle OBA



(b) Write down the mathematical name of quadrilateral AOBP.

(c) Complete these statements.

 
(i) Triangle OBP is congruent to triangle ............................................. 


(ii) Triangle OBP is similar, but not congruent to, triangle ..................................................... 


09.
Theory 8 Marks
CH11 - Statistics

The table shows the amount in dollars, $y$, that 10 families of different size, $x$, spend in one week.
[Table_1]
(a) (i) Complete the scatter diagram.
The first four points have been plotted for you.
[2]
(ii) What type of correlation is shown by the scatter diagram?
Answer(a)(ii) ............................................................ [1]

(b) Find
(i) the mean family size,
Answer(b)(i) ............................................................. [1]
(ii) the mean amount spent in one week.
Answer(b)(ii) $ ............................................................ [1]

(c) (i) Find the equation of the regression line in the form $y = mx + c$.
Answer(c)(i) $ y = ........................................................... [2]
(ii) Use your answer to part (c)(i) to estimate the amount spent in one week by a family of 4.
Answer(c)(ii) $ ............................................................ [1]

10.
Theory 9 Marks
CH8 - Trigonometry

(a) Find $AC$.

(b) Calculate angle $CAD$.

(c) Calculate the area of the quadrilateral $ABCD$.

11.
Theory 11 Marks
CH1 - Number

Paula invests $3000 in Bank A and $3000 in Bank B.
(a) Bank A pays compound interest at a rate of 4% each year.
(i) Find the total amount that Paula has in Bank A at the end of 3 years.

Answer(a)(i) $ \text{.............................................................} \ [2]
(ii) After how many complete years is the total amount that Paula has in Bank A greater than $4000?

Answer(a)(ii) \text{.............................................................} \ [3]
(b) Bank B pays simple interest at a rate of 5% each year.
(i) Find the total amount that Paula has in Bank B at the end of 3 years.

Answer(b)(i) $ \text{.............................................................} \ [1]
(ii) After how many complete years is the total amount that Paula has in Bank B greater than $4000?

Answer(b)(ii) \text{.............................................................} \ [1]
(c) After how many complete years will the total amount that Paula has in Bank A be greater than the total amount that Paula has in Bank B?

Answer(c) \text{.............................................................} \ [3]

12.
Theory 10 Marks
CH10 - Probability

Bag 1 only contains 6 blue balls and 4 red balls.
Bag 2 only contains 8 blue balls and 2 red balls.
Marco chooses a ball at random from Bag 1 and puts it in Bag 2.
He then chooses a ball at random from Bag 2 and puts it in Bag 1.
(a) Complete the tree diagram.

[2]
(b) Find the probability that the two balls chosen are
(i) both blue,
Answer(b)(i) ............................................................... [2]
(ii) one red and one blue.
Answer(b)(ii) ............................................................... [3]
(c) Find the probability that, after Marco chooses the two balls, there are exactly 6 blue balls in Bag 1.
Answer(c) ............................................................... [3]

13.
Theory 11 Marks
CH2 - Algebra

In this question all lengths are in centimetres.



(a) Write down a quadratic equation, in terms of $x$, and show that it simplifies to $7x^2 - 24x - 16 = 0$. [3]

(b) Factorise $7x^2 - 24x - 16$. [2]

(c) Show that the area of the triangle is $84\text{ cm}^2$. [2]

(d) The area of this rectangle is equal to the area of the triangle. Find the value of $y$.



Answer(d) $y = \text{......................................................}$ [4]

14.
Theory 7 Marks
CH2 - Algebra

In this question all measurements are in metres.
A rectangular garden has length $p$ and width $q$.
The garden is divided into 3 sections as shown in the diagram.



(a) Write down an expression, in terms of $p$ and $q$, for the area for flowers.
Answer(a) ..................................................$\text{ m}^2$ [1]

(b) Show that $x = \frac{3}{4} p$.
[2]

(c) Find an expression, in terms of $p$ and $q$, for the area for grass.
Give your answer in its simplest form.
Answer(c) ..................................................$\text{ m}^2$ [2]

(d) Find the ratio area for vegetables : area for grass.
Answer(d) ............................. : ............................. [2]

15.
Theory 13 Marks
CH3 - Functions

The diagram shows a sketch of the graph of $y = f(x)$ where $f(x) = \frac{x^2 + 4x + 3}{x^2 - 4x + 3}$.

(a) (i) Find the equations of the three asymptotes.
Answer(a)(i) $..........................., ..........................., ...........................$ [3]
(ii) Find the co-ordinates of the local maximum point.
Answer(a)(ii) $(..........................., ...........................)$ [2]
(iii) Find the co-ordinates of the local minimum point.
Answer(a)(iii) $(..........................., ...........................)$ [2]
(b) Find the values of $k$, when
(i) $f(x) = k$ has no solutions,
Answer(b)(i) $...............................................................$ [2]
(ii) $f(x) = k$ has one solution.
Answer(b)(ii) $...............................................................$ [1]
(c) Solve the inequality $f(x) > 0$.
Answer(c) $...............................................................$ [3]