All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2017 Summer Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out.
$(0.6)^2$..................................................... [1]

02.
Theory 2 Marks
CH1 - Number

(a) Write the fraction \( \frac{16}{60} \) in its lowest terms. ............................................. [1]
(b) Work out.
\( \frac{4}{11} + \frac{5}{11} \) ............................................. [1]

03.
Theory 2 Marks
CH2 - Algebra

Expand.
$x(x^3 - 4x)$ ............................................................... [2]

04.
Theory 1 Marks
CH1 - Number

Change 430 $cm^2$ into $m^2$.
............................... $m^2$

05.
Theory 1 Marks
CH1 - Number

Write down the value of $16^0$.

06.
Theory 2 Marks
CH1 - Number

Find the lowest common multiple (LCM) of 20 and 24.

07.
Theory 2 Marks
CH3 - Functions

f(x) = x^3 - 2
Find the value of x when f(x) = 25.
x = .................................. [2]

08.
Theory 3 Marks
CH5 - Geometry

Find the value of x.

x = \text{..............................} [3]

09.
Theory 3 Marks
CH2 - Algebra

Solve the simultaneous equations.
$$4x + 3y = 0$$
$$2x - y = 5$$
$$x = \text{....................................}$$
$$y = \text{....................................}$$ [3]

10.
Theory 2 Marks
CH6 - Vectors and transformations

Find $|p|$, giving your answer in the form $3\sqrt{a}$. Where $p = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$.

11.
Theory 3 Marks
CH4 - Coordinate geometry

A is the point (3, 11) and B is the point (7, 3).
Find the equation of the line AB, giving your answer in the form $y = mx + c$.
$y =$ ext{.................................} [3]

12.
Theory 3 Marks
CH2 - Algebra

Solve.
$$2x^2 - 5x - 7 = 0$$
$x = ext{.....................}$ or $x = ext{.....................}$ [3]

13.
Theory 3 Marks
CH2 - Algebra

By rationalising the denominator, simplify \( \frac{12}{\sqrt{6} - 2} \).

14.
Theory 4 Marks
CH10 - Probability

A bag has 3 blue balls and 7 green balls only. One ball is chosen at random and not replaced. A second ball is then chosen at random.
Find the probability that both balls chosen are the same colour. Give your answer in its simplest form.

15.
Theory 3 Marks
CH2 - Algebra

Expand the brackets and simplify.

$(4x - 3y)(2x - 5y)$

16.
Theory 3 Marks
CH3 - Functions

Simplify.

$2 \log 3 - 3 \log 2 + 2 \log \frac{2}{3}$

17.
Theory 2 Marks
CH1 - Number

Write the list of numbers in order, starting with the smallest.

$$\sin 60^\circ \quad \cos 60^\circ \quad \tan 60^\circ \quad \sqrt{2}$$

.................... $<$ .................... $<$ .................... [2]
smallest