No questions found
Fig. 1.1 shows the speed-time graph for the motion of a car.
The mass of the car is 1200 kg.
(a) Calculate, for the first 20 s of the motion,
(i) the distance travelled by the car,
distance = ...........................................................[2]
(ii) the acceleration of the car,
acceleration = .....................................................[2]
(iii) the resultant force acting on the car.
resultant force = .................................................[2]
(b) Describe the motion of the car in the period of time from 25 s to 40 s.
..................................................................................
...................................................................................[1]
(a) State Hooke's Law.
...............................................................................................................................................
............................................................................................................................................... [1]
(b) For forces up to 120N, a spring obeys Hooke's Law.
A force of 120N causes an extension of 64mm.
(i) On Fig. 2.1, draw the force-extension graph for the spring for loads up to 120N. [1]
(ii) Calculate the spring constant $k$ of the spring.
$$k = ext{.................................................................}$$ [2]
(c) A student makes a spring balance using the spring in (b). The maximum reading of this balance is 150N.
The student tests his balance with a known weight of 140N. He observes that the reading of the balance is not 140N.
Suggest and explain why the reading is \textit{not} 140N.
...............................................................................................................................................
............................................................................................................................................... [2]
All the sides of a plastic cube are 8.0 cm long. Fig. 3.1 shows the cube.
The mass of the cube is 0.44 kg.
(a) Explain what is meant by mass.
.................................................................................................................[1]
(b) (i) Calculate the density of the plastic from which the cube is made.
density = ...........................................................[2]
(ii) The density of one type of oil is 850 kg/m^3.
State and explain whether the cube floats or sinks when placed in a container of this oil.
.................................................................................................................
..................................................................................................................[1]
(c) On the Moon, the weight of the cube is 0.70 N.
(i) Calculate the gravitational field strength on the Moon.
gravitational field strength = ..............................................................[2]
(ii) In a laboratory on the Moon, the plastic cube is held stationary, using a clamp, in a beaker of the oil of density 850 kg/m^3.
The arrangement is shown in Fig. 3.2.
The lower face of the cube is 3.0 cm below the surface of the oil.
Use your answer to (c)(i) to calculate the pressure due to the oil on the lower face of the cube.
pressure = ................................................................[2]
Fig. 4.1 shows a balloon filled with helium that is used to lift measuring instruments to a great height above the Earth’s surface.
Fig. 4.1
(a) Explain, in terms of momentum, how the atoms of helium produce a force on the wall of the balloon.
.......................................................................................................................................................
.......................................................................................................................................................
.......................................................................................................................................................
....................................................................................................................................................... [3]
(b) At ground level, the pressure of the helium in the balloon is $1.0 \times 10^5 \text{Pa}$. The volume occupied by the helium is $9.6 \text{m}^3$.
The balloon is released and it rises quickly through the atmosphere. The volume occupied by the helium increases, but the temperature of the helium may be assumed to stay constant.
(i) Explain, in terms of the helium atoms in the balloon, why the pressure in the balloon is smaller than at ground level.
...............................................................................................................................................
...............................................................................................................................................
............................................................................................................................................... [2]
(ii) Calculate the pressure of the helium when it occupies a volume of $12 \text{m}^3$.
pressure = ............................................................. [2]
(a) A wave passes through a gap in a barrier. The wavelength of the wave is the same magnitude as the width of the gap in the barrier.
Tick one box to indicate what happens to the wave.
[Table]
[1 mark]
(b) Fig. 5.1 shows six wavefronts of a wave travelling on the surface of deep water. The wave is incident on a boundary with a region where the water is shallow.
i) On Fig. 5.1, draw the wavefronts of the wave in the shallow water where the wave travels more slowly. [2 marks]
ii) The depth of the shallow water is now changed so that the speed of the wave in the shallow water is $0.60 \text{m/s}$. The speed of the wave in the deep water is $0.80 \text{m/s}$. The distance between successive wavefronts in the deep water is $1.4 \text{cm}$.
Calculate the wavelength of the wave in the shallow water.
wavelength = ................................................................. [4 marks]
(a) The left-hand column of the table shows some possible speeds of a sound wave.
In the right-hand column, write down the medium in which a sound wave has this speed. Choose from solid, liquid or gas.
[Table_1]
(b) Fig. 6.1 represents a series of compressions and rarefactions of a sound wave.
(i) On Fig. 6.1, mark, with the letters X and Y, the mid-points of two rarefactions. [1]
(ii) State, in terms of pressure, what is meant by a rarefaction.
.......................................................................................................................................................
....................................................................................................................................................... [1]
(c) Astronauts set up a mirror on the Moon’s surface. A laser beam is transmitted from the Earth’s surface to the mirror and is then reflected back to Earth.
On a certain day, the time between transmitting the beam from a point on the Earth’s surface and receiving the reflected signal at the same point is 2.56s.
The speed of the laser beam is $3.00 \times 10^8 \text{m/s}$.
Calculate the distance between the Earth’s surface and the Moon’s surface.
distance = ................................................................. [3]
(a) Fig. 7.1 shows a converging lens and its principal axis. The points labelled F are each a principal focus of the lens.
On Fig. 7.1, draw two rays from the top of the object O, to locate the image of O. Label the image I. [3]
(b) Underline three of the terms below to describe the nature of the image produced by a converging lens used as a magnifying glass.
diminished enlarged inverted real same size upright virtual
[2]
(c) Fig. 7.2 shows the path of a ray of red light passing through a glass prism.
A ray of green light enters the prism along the same path as the ray of red light.
On Fig. 7.2, draw the path of the ray of green light as it passes through the prism and emerges into the air. [2]
(a) Describe a renewable process by which electrical energy is obtained from the energy stored in water. You may draw a diagram in the space.
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................[4]
(b) Explain why the process described in (a) can be regarded as renewable.
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................[2]
(c) Explain whether the Sun is the source of the energy stored in the water in (a).
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................[2]
Fig. 9.1 shows a circuit with three 1.5 V cells.
(a) Calculate
(i) the total electromotive force (e.m.f.) of the cells,
e.m.f. = ...........................................................[1]
(ii) the total resistance of the circuit,
resistance = ...........................................................[3]
(iii) the current in the 3.0 Ω resistor.
current = ...........................................................[2]
(b) State, using the letters in Fig. 9.1, how you would connect
(i) an ammeter to measure the total current in the circuit,
..................................................................................................................................................................................[1]
(ii) a voltmeter to measure the potential difference (p.d.) across the 6.0 Ω resistor.
..................................................................................................................................................................................[1]
(a) (i) Draw the circuit symbol for a diode.
[1]
(ii) State the function of a diode.
.........................................................................................................................[1]
(b) Fig. 10.1 shows the proposed system for charging the battery of an electric toothbrush.
The handle of the brush contains the battery and a coil X. The circuit from coil X to the battery is not shown.
The base of the charger contains a coil Y, wound on an iron core, connected to the a.c. mains supply.
To charge the battery, the handle is lowered so that coil Y is inside coil X.
Fig. 10.1 shows the direction needed for the charging current at the battery.
(i) On Fig. 10.1, complete the circuit from terminals A and B of coil X to the battery. Include a diode.
[2]
(ii) Explain how an alternating voltage is produced in coil X.
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
............................................................................................................................................
[3]
The radioactive isotope carbon-14 ($^{14}_{6}\text{C}$) emits $\beta$-particles as it decays.
(a) The decay of carbon-14 produces an isotope of nitrogen (N).
(i) State the nature of a $\beta$-particle and state where it is produced.
............................................................................................................................................
............................................................................................................................................[2]
(ii) Complete the nuclide equation for the radioactive decay of carbon-14.
$$_{6}^{14}\text{C} \rightarrow \,^{........}_{.......}\text{N} + \,^{.......}_{.......}\beta$$ [3]
(b) The half-life of carbon-14 is 5700 years.
Explain what is meant by the term half-life.
............................................................................................................................................
............................................................................................................................................[1]
(c) A workman operates a machine that uses $\beta$-particles to determine the level of liquid in a plastic water bottle that is being filled.
Suggest why
(i) $\alpha$-particles are \textit{not} suitable for the same purpose,
............................................................................................................................................
............................................................................................................................................[1]
(ii) $\gamma$-rays are \textit{not} suitable for the same purpose.
............................................................................................................................................
............................................................................................................................................[1]