No questions found
From this list of numbers, write down
(a) the multiple of 11,
......................................................... [1]
(b) the prime number,
......................................................... [1]
(c) the square number,
......................................................... [1]
(d) the lowest common multiple (LCM) of 4 and 5.
......................................................... [1]
20 25 29 32 33 40 45
Write $\frac{4}{5}$ as a decimal.
Write 30\% as a fraction in its simplest form.
Share $150 in the ratio 2:3.
$ ................... and $ ................... [2]
Write down the mathematical name for an 8-sided shape.
.........................
Measure the angle marked $x$ in the diagram.
(a)
Write down the size of the angle marked $a$ and give a reason for your answer.
$$a = \text{.....................} \text{because} \text{..........................................................................................}$$
......................................................................................................................... [2]
(b)
Find the size of the angle marked $q$.
$$q = \text{.........................................}$$ [2]
Give two examples of discrete data.
1. .........................................................................................................................................................
2. .........................................................................................................................................................
This sign is a company logo.
The diagram shows a rectangle with two identical right-angled triangles removed.
Work out the area of the shaded region.
Give the units of your answer.
The diameter of an atom is 0.00000003 metres.
Write this number in standard form.
Voroda invests $200 at 3\% per year \textbf{simple} interest.
Work out the total value of this investment at the end of 4 years.
$\text{.................................} \quad [3]
(a) Factorise.
4x + 10
.................................. [1]
(b) Expand.
4(9a - 3b)
.................................. [1]
Simplify. \[ \frac{2x}{3} \times \frac{9x}{10} \] = \text{.....................}
The point $A$ has co-ordinates $(3, 2)$ and $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$.
Find the co-ordinates of the point $B$.
\((\text{.....................},\text{.....................})\) [2]
Find the gradient of the line $4y = 3x - 7$.
The point $A$ has co-ordinates $(2, 7)$.
The point $B$ has co-ordinates $(5, 1)$.
Find the co-ordinates of the midpoint of the line $AB$.
(..................., .................)
The function $f(x) = x^2$ is defined for $-3 \le x \le 6$.
Write down the range of $f(x)$.
Describe the single transformation that maps the graph of $y = \frac{1}{x}$ onto the graph of $y = \frac{1}{x+3}$.
Reflect triangle $P$ in the line $y = x$.