All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2022 Winter Zone 1
Theory
MCQ
01.
Theory 2 Marks
CH1 - Number

Work out.
(a) \( 1 + 2 - 3 \times 4 \) ......................................................... [1]
(b) \( 1 + 2 \times 3 - 4 \) ......................................................... [1]

02.
Theory 2 Marks
CH1 - Number

(a) Write $2\frac{1}{4}$ as an improper fraction. ............................................... [1]
(b) Work out. \[ \frac{7}{8} - \frac{3}{4} \] ............................................... [1]

03.
Theory 1 Marks
CH2 - Algebra

Expand.

$3(x - 2y)$

04.
Theory 1 Marks
CH1 - Number

Change 0.2 m^2 into cm^2. ........................ cm^2 [1]

05.
Theory 1 Marks
CH1 - Number

Work out $4^{\frac{3}{2}}$.

06.
Theory 4 Marks
CH1 - Number

(a) Work out $(1.5 \times 10^1) \times (7 \times 10^{-3})$.
Give your answer in standard form.
\[\text{..................................................} \text{ [2]}\]
(b) Work out $(6.5 \times 10^{-2}) + (7.8 \times 10^{-3})$.
Give your answer in standard form.
\[\text{..................................................} \text{ [2]}\]

07.
Theory 3 Marks
CH11 - Statistics

These are the scores of 10 students in a test.
15 5 20 25 7 13 15 11 17 12
Find
(a) the range, ......................................................... [1]
(b) the mean. ......................................................... [2]

08.
Theory 4 Marks
CH2 - Algebra

Find an expression for the $n^{th}$ term of each sequence.
(a) 1, \ 7, \ 13, \ 19, \ 25, \ \ldots \text{........................................ [2]}
(b) 1, \ -2, \ 3, \ -4, \ 5, \ \ldots \text{........................................ [2]}

09.
Theory 3 Marks
CH5 - Geometry

BD is parallel to FAE.
(a) Find angle BAE.
Angle BAE = ................................................ [1]
(b) Find angle FAC.
Angle FAC = .................................................. [2]


10.
Theory 5 Marks
CH4 - Coordinate geometry

A is the point (1, 11) and B is the point (4, 5).
Find the equation of the perpendicular bisector of $AB$. Give your answer in the form $y = mx + c$.
$y = \text{...........................................}$

11.
Theory 5 Marks
CH2 - Algebra

Solve.
(a) \( 4x^2 - 5x - 6 = 0 \)
\( x = \text{.....................} \) or \( x = \text{.....................} \) [3]
(b) \( |2x + 1| = 3 \)
\( \text{.......................................} \) [2]

12.
Theory 3 Marks
CH10 - Probability

Bag A contains balls numbered 2, 4, 4, 4.
Bag B contains balls numbered 1, 1, 2, 3, 4, 4.
Bag C contains balls numbered 1, 2, 3, 4.

One of these three bags is chosen at random.
A ball is chosen at random from this bag.

Find the probability that the ball chosen is numbered 4.
Give your answer as a fraction.

13.
Theory 2 Marks
CH2 - Algebra

Solve.
$\log 2x = 5$
$x = \text{...............................}$ [2]

14.
Theory 4 Marks
CH5 - Geometry

A sector of a circle with radius 6 cm has a sector angle of 150°.
Find the exact value of the area of the shaded region.
Give your answer in its simplest form.