No questions found
The diagram shows a straight line intersecting two parallel lines.
Find the value of $k$ and the value of $m$.
$k = \text{.....................}$
$m = \text{.....................}$
Solve the equation.
$$2q - 7 = 2 - 7q$$
$$q = \text{.........................}$$ [2]
1 $\text{m}^2 = 10^n\ \text{cm}^2$
Find the value of $n$.
$n = \text{...............................}$
Work out $1\frac{1}{3} - \frac{5}{6}$.
An unbiased six-sided die is numbered 1, 2, 3, 4, 5, 6. The die is rolled.
Find the probability that it shows
(a) 6, ............................................... [1]
(b) a number greater than 6. ............................................... [1]
A cone has base radius 5 cm and height $\frac{5}{4}$ cm.
A hemisphere has radius $r$ cm.
The volume of the hemisphere is equal to the volume of the cone.
Find the value of $r$.
$r = \text{...............................}$
Simplify.
$$30t^{30} \div 5t^{5}$$
The diagram shows two triangles formed by two parallel lines and two intersecting lines.
(a) Use one of these words to complete the statement.
alternate congruent similar cyclic parallel
The triangles are ..................................................... [1]
(b) The area of the smaller triangle is 24 cm$^2$.
Calculate the area of the larger triangle.
...................................................... cm$^2$ [2]
Complete each statement.
(a) $(P \cup Q)' = \{.............................................................\}$ [1]
(b) $\{a, e\} = P\.......Q$ [1]
(c) $n(P' \cup Q) = .............$ [1]
U = \{a, b, c, d, e, f, g, h, i, j\}
Rearrange the formula to write $x$ in terms of $a$ and $y$.
$$y = \sqrt{x^2 + 2a^2}$$
$x = \text{.......................................................}$
A, B, C and D are four points on a circle.
AC and BD meet at E.
XAY is a tangent to the circle at A.
Find
(a) angle $CDB$,
Angle $CDB = \text{................................................}$ [1]
(b) angle $ACB$,
Angle $ACB = \text{................................................}$ [1]
(c) angle $DCE$,
Angle $DCE = \text{................................................}$ [1]
(d) angle $YAD$.
Angle $YAD = \text{................................................}$ [1]
Simplify \((3 \times 10^{85}) \times (7 \times 10^{15})\).
Give your answer in standard form.
Factorise.
(a) $49 - 16u^2$ ............................................... [1]
(b) $1 + 4xy - 2x - 2y$ ............................................... [2]
Rationalise the denominator.
\(\frac{5}{\sqrt{3} - \sqrt{2}}\)
log y = log h + log p - log x
Find y in terms of h, p and x.
y = ...................................... [1]
$8^{\frac{4}{3}}=32^x$
Find the value of $x$.
$x=\text{..................................}$ [2]
Simplify.
$$2 - \frac{4 - 3x}{x - 2}$$
Write your answer as a single fraction in its simplest form.