All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2022 Winter Zone 3
Theory
MCQ
01.
Theory 2 Marks
CH5 - Geometry

The diagram shows a straight line intersecting two parallel lines.

Find the value of $k$ and the value of $m$.



$k = \text{.....................}$
$m = \text{.....................}$

02.
Theory 2 Marks
CH2 - Algebra

Solve the equation.
$$2q - 7 = 2 - 7q$$
$$q = \text{.........................}$$ [2]

03.
Theory 1 Marks
CH1 - Number

1 $\text{m}^2 = 10^n\ \text{cm}^2$
Find the value of $n$.
$n = \text{...............................}$

04.
Theory 2 Marks
CH1 - Number

Work out $1\frac{1}{3} - \frac{5}{6}$.

05.
Theory 2 Marks
CH10 - Probability

An unbiased six-sided die is numbered 1, 2, 3, 4, 5, 6. The die is rolled.
Find the probability that it shows
(a) 6, ............................................... [1]
(b) a number greater than 6. ............................................... [1]

06.
Theory 3 Marks
CH7 - Mensuration

A cone has base radius 5 cm and height $\frac{5}{4}$ cm.
A hemisphere has radius $r$ cm.
The volume of the hemisphere is equal to the volume of the cone.
Find the value of $r$.

$r = \text{...............................}$

07.
Theory 2 Marks
CH2 - Algebra

Simplify.
$$30t^{30} \div 5t^{5}$$

08.
Theory 3 Marks
CH5 - Geometry

The diagram shows two triangles formed by two parallel lines and two intersecting lines.
(a) Use one of these words to complete the statement.
alternate congruent similar cyclic parallel
The triangles are ..................................................... [1]
(b) The area of the smaller triangle is 24 cm$^2$.
Calculate the area of the larger triangle.
...................................................... cm$^2$ [2]

09.
Theory 3 Marks
CH9 - Sets

Complete each statement.

(a) $(P \cup Q)' = \{.............................................................\}$ [1]

(b) $\{a, e\} = P\.......Q$ [1]

(c) $n(P' \cup Q) = .............$ [1]

U = \{a, b, c, d, e, f, g, h, i, j\}



10.
Theory 3 Marks
CH2 - Algebra

Rearrange the formula to write $x$ in terms of $a$ and $y$.
$$y = \sqrt{x^2 + 2a^2}$$
$x = \text{.......................................................}$

11.
Theory 4 Marks
CH5 - Geometry

A, B, C and D are four points on a circle.
AC and BD meet at E.
XAY is a tangent to the circle at A.
Find
(a) angle $CDB$,
    Angle $CDB = \text{................................................}$ [1]
(b) angle $ACB$,
    Angle $ACB = \text{................................................}$ [1]
(c) angle $DCE$,
    Angle $DCE = \text{................................................}$ [1]
(d) angle $YAD$.
    Angle $YAD = \text{................................................}$ [1]


12.
Theory 2 Marks
CH1 - Number

Simplify \((3 \times 10^{85}) \times (7 \times 10^{15})\).
Give your answer in standard form.

13.
Theory 3 Marks
CH2 - Algebra

Factorise.

(a) $49 - 16u^2$ ............................................... [1]

(b) $1 + 4xy - 2x - 2y$ ............................................... [2]

14.
Theory 2 Marks
CH1 - Number

Rationalise the denominator.
\(\frac{5}{\sqrt{3} - \sqrt{2}}\)

15.
Theory 1 Marks
CH2 - Algebra

log y = log h + log p - log x
Find y in terms of h, p and x.
y = ...................................... [1]

16.
Theory 2 Marks
CH2 - Algebra

$8^{\frac{4}{3}}=32^x$
Find the value of $x$.
$x=\text{..................................}$ [2]

17.
Theory 3 Marks
CH2 - Algebra

Simplify.
$$2 - \frac{4 - 3x}{x - 2}$$
Write your answer as a single fraction in its simplest form.