All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2018 Winter Zone 2
Theory
MCQ
01.
Theory 2 Marks
CH1 - Number

(a) Write 49059300 correct to 3 significant figures. .................................................. [1]
(b) Write your answer to part (a) in standard form. .................................................. [1]

02.
Theory 2 Marks
CH1 - Number

Find $$\sqrt[3]{\frac{3}{8}}$$.

03.
Theory 1 Marks
CH5 - Geometry

Shade two small squares so that the shape has exactly one line of symmetry.

04.
Theory 3 Marks
CH6 - Vectors and transformations

p = \(\begin{pmatrix} -3 \\ 5 \end{pmatrix}\)
(a) Find the column vector 3p. \(\begin{pmatrix} \quad \end{pmatrix}\) [1]
(b) Find \(|\mathbf{p}|\), giving your answer in surd form. [2]

05.
Theory 2 Marks
CH3 - Functions

f(x) = |2x - 7| for all real x.

(a) Find f(2). [1]

(b) Write down the range of f(x). [1]

06.
Theory 3 Marks
CH4 - Coordinate geometry

The line with equation $2x + 3y = 6$ is drawn on the grid.
On the grid, show clearly the \textbf{single} region defined by these three inequalities.
$2x + 3y \leq 6 \quad x \geq -3 \quad y \leq -1$

07.
Theory 3 Marks
CH2 - Algebra

Factorise.
(a) $64x^2 - 1$ ................................. [1]
(b) $2y^2 - y - 6$ ................................. [2]

08.
Theory 2 Marks
CH2 - Algebra

(a) $2^3 \div 2^7 = 2^p$
Find the value of $p$. ......................................... [1]

(b) $\sqrt{2^5} = 2^q$
Find the value of $q$. ......................................... [1]

09.
Theory 3 Marks
CH11 - Statistics

An archer shoots 150 arrows at a target with sections coloured gold, red, blue, black and white. The table shows her results.

[Table_1]

Complete the compound bar chart to show these results as percentages.



10.
Theory 3 Marks
CH2 - Algebra

Solve.
$4x + 9 \leq 3(2x - 1)$

11.
Theory 4 Marks
CH3 - Functions

The diagram shows nine sketch graphs.

Write the letter of the graph which shows each of these functions.

f(x) = 2x - 3       Graph ...............

f(x) = x^2 - 3       Graph ...............

f(x) = 3 - x^3       Graph ...............

f(x) = (x - 3)^2       Graph ............... [4]

12.
Theory 5 Marks
CH5 - Geometry

A, B, C and D are points on the circle centre O.
PQ is a tangent to the circle at C.
Find these angles.

(a) Angle DAC
Angle DAC = ..................................................... [2]

(b) Angle ABC
Angle ABC = ..................................................... [1]

(c) Angle ACQ
Angle ACQ = ..................................................... [2]

13.
Theory 3 Marks
CH2 - Algebra

Simplify.
$\left(5 + 2\sqrt{3}\right)^2$

14.
Theory 2 Marks
CH3 - Functions

(a) Find the value of $n$ when $\log 5 + \log 3 - \log 2 = \log n$. [1]
(b) Find $\log_3(3^{1.4})$. [1]

15.
Theory 2 Marks
CH8 - Trigonometry

f(x) = 3 \sin 2x^{\circ}

(a) Write down the amplitude of the graph of f(x). ................................................... [1]

(b) The graph of $y = f(x)$ goes through the points $(75, 1.5)$ and $(a, 1.5)$.

Find a possible value of $a$, greater than 75. ................................................... [1]