All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2020 Winter Zone 1
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out.

$1 + 2 - 3 \times 4 \; \; \text{..................} \; [1]$

02.
Theory 1 Marks
CH1 - Number

Work out.

$-48 \div -8$

03.
Theory 2 Marks
CH2 - Algebra

Simplify fully.
$$\frac{5x}{12} \times \frac{4}{15x}$$

04.
Theory 3 Marks
CH2 - Algebra

Solve.
$-3(1 - 4x) = 9$
$x = \text{...............................................}$ [3]

05.
Theory 2 Marks
CH1 - Number

Divide 120 in the ratio 3:5.
.........................., .......................... [2]

06.
Theory 3 Marks
CH1 - Number

The mean of 5 numbers is 12. The mean of 3 of these numbers is 8.
Find the mean of the other two numbers.

07.
Theory 3 Marks
CH2 - Algebra

y varies inversely as x.
When $x = 3$, $y = 16$.

Find $x$ when $y = 6$.

$x = \text{.................................}$ [3]

08.
Theory 4 Marks
CH6 - Vectors and transformations

a = \begin{pmatrix} -4 \\ -3 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ -1 \end{pmatrix}
(a) Find \ a - 3b. \qquad \phantom{} [2]
(b) Find the magnitude of \ \begin{pmatrix} -4 \\ -3 \end{pmatrix}. \qquad \phantom{} [2]

09.
Theory 4 Marks
CH1 - Number

A shop has a sale and all prices are reduced by 20%.

(a) The original price of a shirt is $16.
Find the sale price of the shirt.
$\text{.................................} \ [2]

(b) The sale price of a dress is $40.
Find the original price of the dress.
$\text{.................................} \ [2]

10.
Theory 5 Marks
CH2 - Algebra

Factorise.
(a) $8x + 14$ .......................................................... [1]
(b) $8ax^2 - 6bx^3$ .......................................... [2]
(c) $6ax + 9ay - 8bx - 12by$ .................................. [2]

11.
Theory 2 Marks
CH1 - Number

Work out $4^{\frac{3}{2}}$.

12.
Theory 5 Marks
CH11 - Statistics

The table shows the marks of 80 students in an examination.

[Table_1]

(a) On the grid, draw a cumulative frequency curve to show this information.


(Marks: 4)

(b) Use your graph to estimate the median mark of the students.
(Marks: 1)

13.
Theory 5 Marks
CH4 - Coordinate geometry

A is the point $(1, 7)$ and B is the point $(4, 1)$.
Find the equation of the perpendicular bisector of $AB$ in the form $y = mx + c$.

$y = \text{................................................}$