All Questions: Cambridge IGCSE Mathematics - International - 0607 - Advanced Paper 2 2020 Winter Zone 3
Theory
MCQ
01.
Theory 1 Marks
CH1 - Number

Work out $(0.2)^3$.

02.
Theory 2 Marks
CH2 - Algebra

Solve the equation.

$$2x - 7 = -3$$

$x = \text{....................................} \quad [2]$

03.
Theory 2 Marks
CH1 - Number

Work out $\frac{5}{6} \div \frac{15}{16}$.
Give your answer as a fraction in its lowest terms.

04.
Theory 2 Marks
CH1 - Number

Find the integer values of $x$ when $-1 \leq x < 3$.

05.
Theory 2 Marks
CH2 - Algebra

Solve the simultaneous equations.
$$2p - 3q = 7$$
$$p + 3q = 2$$
$$p = \text{......................................}$$
$$q = \text{......................................}$$

06.
Theory 2 Marks
CH7 - Mensuration

Find the area of the sector.
Give your answer, in terms of \( \pi \), in its simplest form.


07.
Theory 3 Marks
CH5 - Geometry

Find, as a fraction, the value of $\sin y$.

$\sin y = \text{.................................................}$ [3]

08.
Theory 2 Marks
CH1 - Number

Find the value of
(a) \( \left( \frac{1}{2} \right)^{-3} \), .......................................... [1]
(b) \( \log_5 125 \). .......................................... [1]

09.
Theory 2 Marks
CH2 - Algebra

Simplify $4x^4 \times 5x^5$.

10.
Theory 3 Marks
CH2 - Algebra

$J = m(k^2 + h^2)$
Rearrange the formula to make $h$ the subject.
$h = \text{.................................}$

11.
Theory 3 Marks
CH8 - Trigonometry

Find the value of $x^2$ for the triangle given below:

[Image_1: A triangle with sides 8 cm, 10 cm, and x cm, and an angle of 60° between the 8 cm and 10 cm sides.]

12.
Theory 3 Marks
CH5 - Geometry

In the diagram, $A$, $B$ and $C$ are points on parallel lines. $AC = BC$.
Work out the value of $y$.

$y = \text{.................................}$

13.
Theory 3 Marks
CH1 - Number

(2\sqrt{3} - 3\sqrt{2})^2 = p + q\sqrt{6}
Find the value of $p$ and the value of $q$.

$p$ = ...................................

$q$ = ..................................... [3]

14.
Theory 2 Marks
CH2 - Algebra

y varies inversely as $(x - 3)^2$. When $x = 1$, $y = 4$.

Find $y$ in terms of $x$.

y = \text{..........................................} \hspace{10pt} [2]

15.
Theory 2 Marks
CH2 - Algebra

log x = 2 \log 3 - 5 \log 2
Find the value of x.
x = \text{.....................................................} [2]

16.
Theory 2 Marks
CH8 - Trigonometry

α is acute and tan α = x.
Find, in terms of x,
(a) tan(180−α),
tan(180−α) = .......................................... [1]
(b) tan(90−α).
tan(90−α) = .......................................... [1]

17.
Theory 4 Marks
CH2 - Algebra

Simplify.
$$\frac{3x - 6y - ax + 2ay}{x^3 - 2x^2 y}$$